首页> 外文OA文献 >A Homogeneous Hierarchical Scripted Vector Classification Network with Optimisation by Genetic Algorithm
【2h】

A Homogeneous Hierarchical Scripted Vector Classification Network with Optimisation by Genetic Algorithm

机译:遗传算法优化的均匀分层脚本矢量分类网络。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A simulated learning hierarchical architecture for vector classification is presented. The hierarchy used homogeneous scripted classifiers, maintaining similarity tables, and selforganising maps for the input. The scripted classifiers produced output, and guided learning with permutable script instruction tables. A large space of parametrised script instructions was created, from which many different combinations could be implemented. The parameter space for the script instruction tables was tuned using a genetic algorithm with the goal of optimizing the networks ability to predict class labels for bit pattern inputs. The classification system, known as Dura, was presented with various visual classification problems, such as: detecting overlapping lines, locating objects, or counting polygons. The network was trained with a random subset from the input space, and was then tested over a uniformly sampled subset. The results showed that Dura could successfully classify these and other problems. The optimal scripts and parameters were analysed, allowing inferences about which scripted operations were important, and what roles they played in the learning classification system. Further investigations were undertaken to determine Dura's performance in the presence of noise, as well as the robustness of the solutions when faced with highly stochastic training sequences. It was also shown that robustness and noise tolerance in solutions could be improved through certain adjustments to the algorithm. These adjustments led to different solutions which could be compared to determine what changes were responsible for the increased robustness or noise immunity. The behaviour of the genetic algorithm tuning the network was also analysed, leading to the development of a super solutions cache, as well as improvements in: convergence, fitness function, and simulation duration. The entire network was simulated using a program written in C++ using FLTK libraries for the graphical user interface.
机译:提出了一种用于向量分类的模拟学习分层体系结构。层次结构使用同类脚本分类器,维护相似性表以及用于输入的自组织映射。脚本分类器产生输出,并通过可替换的脚本指令表指导学习。创建了大量参数化的脚本指令,可以从中实现许多不同的组合。脚本指令表的参数空间使用遗传算法进行了调整,目的是优化网络预测位模式输入的类标签的能力。分类系统Dura存在各种视觉分类问题,例如:检测重叠线,定位对象或计算多边形。使用来自输入空间的随机子集训练网络,然后在统一采样的子集上对其进行测试。结果表明,Dura可以成功地对这些问题和其他问题进行分类。分析了最佳脚本和参数,从而可以推断出哪些脚本操作很重要,以及它们在学习分类系统中所扮演的角色。进行了进一步的研究,以确定Dura在存在噪声的情况下的性能,以及面对高度随机训练序列时解决方案的稳定性。还表明,通过对算法进行某些调整,可以提高解决方案的鲁棒性和噪声容忍度。这些调整导致了不同的解决方案,可以对其进行比较,以确定哪些变化导致了增强的鲁棒性或抗噪性。还分析了遗传算法调整网络的行为,从而导致了超级解决方案缓存的开发以及以下方面的改进:收敛,适应度函数和仿真持续时间。整个网络使用C ++编写的程序进行仿真,该程序使用FLTK库作为图形用户界面。

著录项

  • 作者

    Wright Hamish Michael;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号