首页> 外文OA文献 >Direct Search Methods for Nonsmooth Problems using Global Optimization Techniques
【2h】

Direct Search Methods for Nonsmooth Problems using Global Optimization Techniques

机译:使用全局优化技术的非光滑问题的直接搜索方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis considers the practical problem of constrained and unconstrained local optimization. This subject has been well studied when the objective function f is assumed to smooth. However, nonsmooth problems occur naturally and frequently in practice. Here f is assumed to be nonsmooth or discontinuous without forcing smoothness assumptions near, or at, a potential solution. Various methods have beenpresented by others to solve nonsmooth optimization problems, however only partial convergence results are possible for these methods.In this thesis, an optimization method which use a series of local and localized global optimization phases is proposed. The local phase searches for a local minimumand gives the methods numerical performance on parts of f which are smooth. The localized global phase exhaustively searches for points of descent in a neighborhood of cluster points. It is the localized global phase which provides strong theoretical convergence results on nonsmooth problems.Algorithms are presented for solving bound constrained, unconstrained and constrained nonlinear nonsmooth optimization problems. These algorithms use direct search methods in the local phase as they can be applied directly to nonsmooth problems because gradients are not explicitly required. The localized global optimization phase uses a new partitioning random search algorithm to direct random sampling into promising subsets of ℝⁿ. The partition is formed using classification and regression trees (CART) from statistical pattern recognition. The CART partition defines desirable subsets where f is relatively low, based on previous sampling, from which further samples are drawn directly. For each algorithm, convergence to an essential local minimizer of f is demonstrated under mild conditions. That is, a point x* for which the set of all feasible points with lower f values has Lebesgue measure zero for all sufficiently small neighborhoods of x*. Stopping rules are derived for each algorithm giving practical convergence to estimates of essential local minimizers. Numerical results are presented on a range of nonsmooth test problems for 2 to 10 dimensions showing the methods are effective in practice.
机译:本文考虑了约束优化和无约束局部优化的实际问题。当假设目标函数f平滑时,已经对该主题进行了充分的研究。但是,在实践中自然会发生不平稳的问题,而且这种情况经常发生。在此,假定f为非光滑或不连续的,而不会迫使平滑度假设接近或处于可能的解中。其他人提出了各种各样的方法来解决非光滑优化问题,但是这些方法只能得到部分收敛的结果。本文提出了一种使用一系列局部和局部全局优化阶段的优化方法。局部相搜索局部最小值,并在光滑的f部分上给出方法的数值性能。局部全局阶段穷举搜索聚类点附近的下降点。它是局部全局阶段,为非光滑问题提供了有力的理论收敛性。提出了求解有界约束,无约束和约束非线性非光滑优化问题的算法。这些算法在本地阶段使用直接搜索方法,因为可以将它们直接应用于非平滑问题,因为不需要明确地使用梯度。局部全局优化阶段使用新的分区随机搜索算法将随机采样定向到into的有希望子集中。使用来自统计模式识别的分类树和回归树(CART)形成分区。 CART分区基于以前的采样定义了f相对较低的理想子集,直接从中提取其他样本。对于每种算法,在温和条件下都证明了收敛到f的必要局部极小值。也就是说,对于点x *,对于所有足够小的x *邻域,具有较低f值的所有可行点的集合的Lebesgue度量为零。为每种算法导出了停止规则,从而使实际的基本最小化估计值收敛。在2至10维的一系列非光滑测试问题上给出了数值结果,表明该方法在实践中是有效的。

著录项

  • 作者

    Robertson Blair Lennon;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号