首页> 外文OA文献 >Explicit, multi-map symplectic integrator for three-body classical trajectory studies in hyperspherical coordinates
【2h】

Explicit, multi-map symplectic integrator for three-body classical trajectory studies in hyperspherical coordinates

机译:用于超球坐标系中三体经典轨迹研究的显式多地图辛积分器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Symplectic integrators are well known for preserving the phase space volume in Hamiltonian dynamics and are particularly suited for problems that require long integration times. There is a general operator splitting method for developing explicit symplectic integration algorithms to any arbitrary even order for separable Hamiltonians where the position and momentum coordinates are uncoupled. Explicit symplectic integrators for general Hamiltonians are more difficult to obtain, but can be developed by a composition of symplectic maps if the Hamiltonian can be split into exactly integrable parts. No general technique exists for splitting any Hamiltonian of general form. Many three body problems in classical mechanics can be effectively investigated in symmetrized, hyperspherical polar coordinates, but the Hamiltonian expressed in these coordinates is non-separable. In molecular dynamics, the hyperspherical coordinates facilitate the validation and visualization of potential energy surfaces and for quantum reactive scattering problems, the coordinates eliminate the need for adjusting the wavefunction between product and reactant channels. An explicit symplectic integrator for hyperspherical coordinates has not yet been devised. This dissertation presents an explicit, multi-map symmetrized composition method symplectic integrator for three-body Hamiltonians in symmetrized, hyperspherical polar coordinates, specifically for classical trajectory studies in the plane.
机译:辛积分器以保持哈密顿动力学中的相空间量而闻名,特别适合于需要较长积分时间的问题。对于将位置和动量坐标解耦的可分离的哈密顿量,有一种通用的算子分裂方法可以将显式辛积分算法发展为任意偶数阶。一般哈密顿量的显式辛积分器更难获得,但是如果可以将哈密顿量分解成完全可积分的部分,则可以通过合成辛图来发展。不存在用于拆分任何一般形式的哈密顿量的通用技术。可以在对称的超球极坐标中有效地研究经典力学中的许多三个身体问题,但是用这些坐标表示的哈密顿量是不可分的。在分子动力学中,超球形坐标有助于势能面的验证和可视化,并且对于量子反应性散射问题,坐标无需调整产物和反应物通道之间的波函数。尚未设计出用于超球坐标的显式辛积分器。本文提出了一种对称的超球极坐标中三体哈密顿量的显式,多图对称合成方法辛积分器,特别是平面中经典轨迹的研究。

著录项

  • 作者

    Burkhardt Paul;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号