首页> 外文OA文献 >Microfluidic platforms for the investigation of fuel cell catalysts and electrodes
【2h】

Microfluidic platforms for the investigation of fuel cell catalysts and electrodes

机译:用于研究燃料电池催化剂和电极的微流体平台

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A clear need exists for novel approaches to producing and utilizing energy in more efficient ways, in light of society’s ever increasing demand as well as growing concerns with respect to climate change related to CO2 emissions. The development of low temperature fuel cell technologies will continue to play an important role in many alternative energy conversion strategies, especially for portable electronics and automotive applications. However, widespread commercialization of fuel cell technologies has yet to be achieved due to a combination of high costs, poor durability and, system performance limitations (Chapter 1). Developing a better understanding of the complex interplay of electrochemical, transport, and degradation processes that govern the performance and durability of novel fuel cell components, particularly catalysts and electrodes, within operating fuel cells is critical to designing robust, inexpensive configurations that are required for commercial introduction. Such detailed in-situ investigations of individual electrode processes are complicated by other factors such as water management, uneven performance across electrodes, and temperature gradients. Indeed, too many processes are interdependent on the same few variable parameters, necessitating the development of novel analytical platforms with more degrees of freedom.Previously, membraneless microfluidic fuel cells have been developed to address some of the aforementioned fuel cell challenges (Chapter 2). At the microscale, the laminar nature of fluid flow eliminates the need for a physical barrier, such as a stationary membrane, while still allowing ionic transport between electrodes. This enables the development of many unique and innovative fuel cell designs. In addition to addressing water management and fuel crossover issues, these laminar flow-based systems allow for the independent specification of individual stream compositions (e.g., pH). Furthermore, the use of a liquid electrolyte enables the simple in-situ analysis of individual electrode performance using an off-the-shelf reference electrode. These advantages can be leveraged to develop microfluidic fuel cells as versatile electro-analytical platforms for the characterization and optimization of catalysts and electrodes for both membrane- and membraneless fuel cells applications. To this end, a microfluidic hydrogen-oxygen (H2/O2) fuel cell has been developed which utilizes a flowing liquid electrolyte instead of a stationary polymeric membrane. For analytical investigations, the flowing stream (i) enables autonomous control over electrolyte parameters (i.e., pH, composition) and consequently the local electrode environments, as well as (ii) allows for the independent in-situ analyses of catalyst and/or electrode performance and degradation characteristics via an external reference electrode (e.g., Ag/AgCl). Thus, this microfluidic analytical platform enables a high number of experimental degrees of freedom, previously limited to a three-electrode electrochemical cell, to be employed in the construct of working fuel cell.Using this microfluidic H2/O2 fuel cell as a versatile analytical platform, the focus of this work is to provide critical insight into the following research areas:•Identify the key processes that govern the electrode performance and durability in alkaline fuel cells as a function of preparation methods and operating parameters (Chapter 3).•Determine the suitability of a novel Pt-free oxygen reduction reaction catalyst embedded in gas diffusion electrodes for acidic and alkaline fuel cell applications (Chapter 4).•Establish electrode structure-activity relationships by aligning in-situ electrochemical analyses with ex-situ microtomographic (MicroCT) structural analyses (Chapter 5).•Investigate the feasibility and utility of a microfluidic-based vapor feed direct methanol fuel cell (VF-DMFC) configuration as a power source for portable applications (Chapter 6).In all these areas, the information garnered from these in-situ analytical platforms will advance the development of more robust and cost-effective electrode configurations and thus more durable and commercially-viable fuel cell systems (both membrane-based and membraneless).
机译:鉴于社会不断增长的需求以及对与CO2排放相关的气候变化的担忧,迫切需要以更有效的方式生产和利用能源的新颖方法。低温燃料电池技术的发展将继续在许多替代能源转换策略中发挥重要作用,尤其是在便携式电子和汽车应用中。但是,由于成本高,耐用性差和系统性能受到限制,燃料电池技术尚未实现广泛的商业化(第1章)。更好地了解运行中的燃料电池中控制新型燃料电池组件(尤其是催化剂和电极)的性能和耐用性的电化学,运输和降解过程之间的复杂相互作用,对于设计商业所需的坚固,廉价的配置至关重要介绍。单个电极过程的这种详细的原位研究会因其他因素(例如水管理,电极间性能不均匀以及温度梯度)而变得复杂。确实,太多的过程都依赖于相同的几个可变参数,因此需要开发具有更大自由度的新型分析平台。以前,已经开发了无膜微流控燃料电池来应对上述燃料电池挑战(第2章)。在微观尺度上,流体的层流性质消除了对物理屏障(例如固定膜)的需要,同时仍然允许电极之间的离子传输。这使得能够开发许多独特和创新的燃料电池设计。除了解决水管理和燃料交换问题外,这些基于层流的系统还允许独立指定各个流的组成(例如pH)。此外,使用液体电解质可以使用现成的参比电极对单个电极的性能进行简单的原位分析。这些优势可用于开发微流体燃料电池,作为通用的电分析平台,用于膜和无膜燃料电池应用的催化剂和电极的表征和优化。为此,已经开发了一种微流体氢氧(H 2 / O 2)燃料电池,其利用流动的液体电解质代替固定的聚合物膜。为了进行分析研究,流动的物流(i)能够自主控制电解质参数(即pH值,组成),因此可以控制局部电极环境,以及(ii)可以对催化剂和/或电极进行独立的原位分析通过外部参比电极(例如,Ag / AgCl)的性能和降解特性。因此,这种微流体分析平台能够将以前仅限于三电极电化学电池的大量实验自由度用于工作燃料电池的构造中。使用这种微流体H2 / O2燃料电池作为通用分析平台,这项工作的重点是提供对以下研究领域的批判性见解:•根据制备方法和操作参数,确定控制碱性燃料电池的电极性能和耐用性的关键过程(第3章)。嵌入在气体扩散电极中的新型无Pt氧还原反应催化剂适用于酸性和碱性燃料电池的应用(第4章)。•通过将原位电化学分析与异位显微断层照相术(MicroCT)进行比对来建立电极结构-活性关系结构分析(第5章)。•研究基于微流体的蒸气进料直接甲烷的可行性和实用性燃料电池(VF-DMFC)配置作为便携式应用的电源(第6章)。在所有这些领域中,从这些原位分析平台获得的信息将推动更健壮和更具成本效益的电极配置的发展。因此,燃料电池系统(基于膜的和无膜的)都更加耐用且具有商业可行性。

著录项

  • 作者

    Brushett Fikile R.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号