首页> 外文OA文献 >Magnetic resonance image reconstruction from highly undersampled K-Space data using dictionary learning
【2h】

Magnetic resonance image reconstruction from highly undersampled K-Space data using dictionary learning

机译:利用字典学习从高度欠采样的K-space数据重建磁共振图像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Compressed sensing (CS) utilizes the sparsity of MR images to enable accurate reconstruction from undersampled k-space data. Recent CS methods have employed analytical sparsifying transforms such as wavelets, curvelets, and finite differences. In this thesis, we propose a novel framework for adaptively learning the sparsifying transform (dictionary), and reconstructing the image simultaneously from highly undersampled k-space data. The sparsity in this framework is enforced on overlapping image patches emphasizing local structure. Moreover, the dictionary is adapted to the particular image instance, thereby favoring better sparsities and consequently much higher undersampling rates. The proposed alternating reconstruction algorithm learns the sparsifying dictionary, and uses it to remove aliasing and noise in one step, and subsequently restores and fills in the k-space data in the other step. Numerical experiments are conducted on MR images and on real MR data of several anatomies with a variety of sampling schemes. The results demonstrate dramatic improvements on the order of 4-18 dB in reconstruction error and doubling of the acceptable undersampling factor using the proposed adaptive dictionary as compared to previous CS methods. These improvements persist over a wide range of practical data SNRs, without any parameter tuning. As a further enhancement to the proposed dictionary learning scheme for MRI reconstruction, we explore the use of an additive multiscale dictionary formulation. This formulation enforces sparsity of the reconstructed image simultaneously at multiple scales (patch sizes) and combines the results at those scales to obtain superior reconstructions. The multiscale dictionary in the proposed formulation is a collection of several single scale dictionaries that operate separately. The alternating reconstruction algorithm learns the various single scale sparsifying dictionaries and uses them to remove image artifacts in one step, and then restores and fills in k-space in the other step. Experiments conducted on several MR images using simulated k-space undersampling with a variety of sampling schemes show promising improvements of up to 1.4 dB in reconstruction error with the proposed multiscale dictionary as compared to a dictionary learned at only one scale. This improvement is also achieved at a substantially lower computational complexity for the multiscale formulation, thereby demonstrating that (additive) multiscale sparse representations are both better and faster. The final improvement explored in this thesis is a sequential multiscale reconstruction algorithm that starts with the lowest scale and adds in the higher scales sequentially over iterations. This approach is shown to be faster than the one where all scales are used for all the iterations, while achieving the same PSNR in the reconstructed image.
机译:压缩传感(CS)利用MR图像的稀疏性,能够根据欠采样的k空间数据进行准确的重建。最近的CS方法已经采用了解析稀疏变换,例如小波,曲线小波和有限差分。在本文中,我们提出了一种新颖的框架,用于自适应学习稀疏变换(字典),并从高度欠采样的k空间数据中同时重建图像。此框架中的稀疏性是在强调局部结构的重叠图像块上执行的。而且,字典适合于特定的图像实例,从而有利于更好的稀疏性,因此具有更高的欠采样率。提出的交替重构算法学习稀疏字典,并用它一步消除混叠和噪声,随后在另一步中恢复并填充k空间数据。使用多种采样方案,对几个解剖结构的MR图像和真实MR数据进行了数值实验。结果表明,与以前的CS方法相比,使用拟议的自适应字典,重构误差在4-18 dB的数量级上得到了显着改善,可接受的欠采样因子提高了一倍。这些改进可在各种实际数据SNR范围内保持不变,而无需任何参数调整。作为对提出的用于MRI重建的字典学习方案的进一步增强,我们探索了加法多尺度字典公式的使用。此公式可同时在多个尺度(补丁大小)上增强重建图像的稀疏性,并将这些尺度下的结果组合在一起以获得更好的重建效果。提议的公式中的多尺度字典是几个单独运行的单尺度字典的集合。交替重建算法学习各种单尺度稀疏字典,并在第一步中使用它们去除图像伪像,然后在另一步中恢复并填充k空间。使用模拟的k空间欠采样和各种采样方案对几张MR图像进行的实验表明,与仅以一个尺度学习的字典相比,所提出的多尺度字典在重构误差方面有望实现高达1.4 dB的改进。对于多尺度公式,还可以以大大降低的计算复杂度来实现这一改进,从而证明(加性)多尺度稀疏表示既更好又更快。本文探讨的最终改进是一种顺序多尺度重构算法,该算法从最低尺度开始,然后在迭代中依次增加更高尺度。与在所有迭代中使用所有比例尺的方法相比,该方法显示出更快的速度,同时在重建图像中实现了相同的PSNR。

著录项

  • 作者

    Ravishankar Saiprasad;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号