首页> 外文OA文献 >Unified Framework for Top-k Query Processing in Peer-to-Peer Networks
【2h】

Unified Framework for Top-k Query Processing in Peer-to-Peer Networks

机译:用于对等网络中的前k个查询处理的统一框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Supporting queries over dispersed data stored in large-scale distributed systems, such as peer-to-peer networks, naturally calls for ranked retrieval in order to effectively focus on the most relevant (i.e., top-k) results. While top-k retrieval has been actively studied lately, existing algorithms are too restrictive due to their assumptions about how the data is partitioned amongst the various data sources. Unlike existing approaches that assume a single type of data partitioning, we generalize the application scenario to include peer-to-peer networks of a potentially large number of peers in which the data might be partitioned in various ways. More specifically, we develop a novel unified top-k query processing framework supporting various types of data partitioning. In order to support top-k queries in our unified framework, we have developed very efficient wavelet-based data synopses and algorithms that approximate the top-k results with most operations occurring in the wavelet coefficient domain. Our simulation and experimental results show that our framework yields low bandwidth consumption, high accuracy, and low latency for top-k retrieval in peer-to-peer networks.
机译:支持对存储在诸如对等网络之类的大规模分布式系统中的分散数据的查询,自然要求排名检索,以便有效地关注最相关的(即,前k个)结果。尽管最近已经对top-k检索进行了积极的研究,但是由于现有算法对数据如何在各种数据源之间进行划分的假设,因此它们的局限性太大。与采用单一数据分区类型的现有方法不同,我们将应用程序场景概括为包括潜在大量对等点的对等网络,在对等网络中,数据可能会以各种方式进行分区。更具体地说,我们开发了一种新颖的统一top-k查询处理框架,支持各种类型的数据分区。为了在我们的统一框架中支持top-k查询,我们开发了非常有效的基于小波的数据提要和算法,这些算法可以近似top-k结果,而大多数操作都发生在小波系数域中。我们的仿真和实验结果表明,我们的框架为对等网络中的top-k检索提供了低带宽消耗,高精度和低延迟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号