首页> 外文OA文献 >Solution of Large Markov Models Using Lumping Techniques and Symbolic Data Structures
【2h】

Solution of Large Markov Models Using Lumping Techniques and Symbolic Data Structures

机译:利用集总技术和符号数据结构求解大型马尔可夫模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Continuous time Markov chains (CTMCs) are among the most fundamental mathematical structures used for performance and dependability modeling of communication and computer systems. They are often constructed from models described in one of the various high-level formalisms. Since the size of a CTMC usually grows exponentially with the size of the corresponding high-level model, one often encounters the infamous state-space explosion problem, which often makes solution of the CTMCs intractable and sometimes makes it impossible. In state-based numerical analysis, which is the solution technique we have chosen to use to solve for measures defined on a CTMC, the state-space explosion problem is manifested in two ways: 1) large state transition rate matrices, and 2) large iteration vectors.The goal of this dissertation is to extend, improve, and combine existing solutions of the state-space explosion problem in order to make possible the construction and solution of very large CTMCs generated from high-level models. Our new techniques follow largeness avoidance and largeness tolerance approaches. In the former approach, we reduce the size of the CTMC that needs to be solved in order to compute the measures of interest. That makes both the transition matrix and the iteration vectors smaller. In the latter approach, we reduce the size of the representation of the transition matrix by using symbolic data structures.In particular, we have developed the fastest known CTMC lumping algorithm with the running time of Ord(m log n), where n and m are the number of states and non-zero entries of the generator matrix of the CTMC, respectively. The algorithm can be used both in isolation and along with all compositional lumping algorithms, including the one we have proposed in this dissertation. We have also combined the use of multi-valued decision diagram (MDD) and matrix diagram (MD) symbolic data structures with state-lumping techniques to develop an efficient symbolic state-space exploration algorithm for state-sharing replicate/join composed models that exploits lumpings that are due to equally behaving components created by the replicate operator. Finally, we have developed a new compositional algorithm that lumps CTMCs represented as MDs. Unlike other compositional lumping algorithms, our algorithm does not require any knowledge of the modeling formalisms from which the MDs were generated. Our approach relies on local conditions, i.e., conditions on individual nodes of the MD, which are often much smaller than the state transition rate matrix of the overall CTMC. We believe that our new approach has a simpler formulation, and thus is easier to understand.
机译:连续时间马尔可夫链(CTMC)是用于通信和计算机系统性能和可靠性建模的最基本数学结构之一。它们通常是根据各种高级形式主义之一中描述的模型构建的。由于CTMC的大小通常会随着相应的高级模型的大小呈指数增长,因此人们经常会遇到臭名昭著的状态空间爆炸问题,这常常使CTMC的解决方案变得棘手,有时甚至无法解决。在基于状态的数值分析中,这是我们选择用来解决CTMC上定义的度量的求解技术,状态空间爆炸问题以两种方式体现:1)大的状态转换率矩阵,以及2)大的状态转换率矩阵。本文的目的是扩展,改进和组合状态空间爆炸问题的现有解决方案,以使构建和求解由高级模型生成的超大型CTMC成为可能。我们的新技术遵循避免大尺寸和大尺寸公差的方法。在前一种方法中,我们减小了CTMC的大小,以便计算感兴趣的度量。这使得过渡矩阵和迭代向量都较小。在后一种方法中,我们通过使用符号数据结构来减小转换矩阵表示的大小,尤其是我们开发了最快的已知CTMC集总算法,其运行时间为 Ord(m log n),其中n和m分别是CTMC的生成器矩阵的状态数和非零项。该算法既可以隔离使用,也可以与所有组合集总算法一起使用,包括我们在本文中提出的算法。我们还结合了将多值决策图(MDD)和矩阵图(MD)符号数据结构与状态集总技术结合使用,以开发一种有效的符号状态空间探索算法,用于状态共享复制/联合组成模型的开发,归因于复制运算符创建的组件表现均等的集总。最后,我们开发了一种新的合成算法,该算法将CTMC团块化为MD。与其他成分集总算法不同,我们的算法不需要任何有关生成MD的建模形式主义的知识。我们的方法依赖于局部条件,即MD各个节点上的条件,通常比整个CTMC的状态转换率矩阵小得多。我们认为,我们的新方法具有更简单的表述,因此更易于理解。

著录项

  • 作者

    Derisavi Salem;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号