【24h】

Symbolic Solution of Kronecker-Based Structured Markovian Models

机译:基于Kronecker的结构化马尔可夫模型的符号解

获取原文

摘要

This paper describes a method to obtain symbolic solution of large stochastic models using Gauss-Jordan elimination. Such solution is an efficient alternative to standard simulations and it allows fast and exact solution of very large and complex models that are hard to be dealt even with iterative numerical methods. The proposed method assumes the system described as a structured (modular) Markovian system with discrete states for each system module and transitions among those states ruled by Markovian processes. The mathematical representation of such system is made by a Kronecker (Tensor) formula, i.e., a tensor formulation of small matrices representing each system module transitions and occasional dependencies among modules. Preliminary results of the proposed solution indicate the expected efficiency of the proposed solution.
机译:本文描述了一种使用高斯-乔丹消去法来获得大型随机模型的符号解的方法。这种解决方案是标准仿真的有效替代方案,它可以为大型和复杂的模型提供快速而精确的解决方案,即使使用迭代数值方法也难以解决。所提出的方法假设系统描述为结构化的(模块化)马尔可夫系统,每个系统模块具有离散的状态,并且在这些状态之间由马尔可夫过程进行转换。这种系统的数学表示是通过克罗内克(Tensor)公式进行的,即小矩阵的张量公式表示了每个系统模块的转换以及模块之间的偶然性。提出的解决方案的初步结果表明了提出的解决方案的预期效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号