首页> 外文OA文献 >Estimating directed information to infer causal relationships between neural spike trains and approximating discrete probability distributions with causal dependence trees
【2h】

Estimating directed information to infer causal relationships between neural spike trains and approximating discrete probability distributions with causal dependence trees

机译:估计有向信息以推断神经穗列车之间的因果关系和用因果依赖树近似离散概率分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work examines an information theoretic quantity known as directed information,which measures statistically causal influences between processes. It is shown to be a general quantity, applicable to arbitrary probability distributions. It is interpreted in terms of prediction, communication with feedback,source coding with feed forward, control over noisy channels, and other settings. It is also shown to be consistent with Granger's philosophical definition. The concepts of direct and indirect causation in a network of processesare formalized. Next, two applications of directed information are investigated.Neuroscience researchers have been attempting to identify causal relationships between neural spike trains in electrode recordings, but have been doing so with correlation measures and measures based on Granger causality. Wediscuss why these methods are not robust, and do not have statistical guarantees. We use a point process GLM model and MDL (as a model order selection tool) for consistent estimation of directed information between neuralspike trains. We have successfully applied this methodology to a network of simulated neurons and electrode array recordings.This work then develops a procedure, similar to Chow and Liu's, for fi nding the "best" approximation (in terms of KL divergence) of a full, jointdistribution over a set of random processes, using a causal dependence tree distribution. Chow and Liu's procedure had been shown to be equivalent to maximizing a sum of mutual informations, and the procedure presented hereis shown to be equivalent to maximizing a sum of directed informations. An algorithm is presented for efficiently finding the optimal causal tree, similarto that in Chow and Liu's work.
机译:这项工作研究了称为定向信息的信息理论量,该理论量度了统计过程之间的因果关系。它显示为通用量,适用于任意概率分布。根据预测,与反馈的通信,具有前馈的源代码编码,对噪声通道的控制以及其他设置来解释它。它也被证明与格兰杰的哲学定义是一致的。流程网络中直接和间接因果关系的概念已被形式化。接下来,对定向信息的两种应用进行了研究。神经科学研究者一直在尝试确定电极记录中神经尖峰序列之间的因果关系,但一直在使用相关措施和基于Granger因果关系的措施来进行识别。我们讨论了为什么这些方法不可靠,并且没有统计保证。我们使用点过程GLM模型和MDL(作为模型顺序选择工具)对神经穗火车之间的有向信息进行一致的估计。我们已经成功地将此方法应用于模拟神经元和电极阵列记录的网络。然后,这项工作开发了类似于Chow和Liu的方法,以找到完整的,联合分布的“最佳”近似值(就KL散度而言)。使用因果关系树分布在一组随机过程上进行。已经证明Chow和Liu的过程等效于最大化互信息的总和,而此处介绍的过程表明等效于最大化定向信息的总和。提出了一种算法,可以有效地找到最佳因果树,类似于Chow和Liu的工作。

著录项

  • 作者

    Quinn Christopher J.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号