首页> 外文OA文献 >Generalized finite element methods for three-dimensional crack growth simulations
【2h】

Generalized finite element methods for three-dimensional crack growth simulations

机译:三维裂纹扩展模拟的广义有限元方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Three-dimensional (3-D) crack growth analysis is crucial for the assessment of structures such as aircrafts, rockets, engines and pressure vessels, which are subjected to extreme loading conditions. The analysis of 3-D arbitrary crack growth using the standard Finite Element Method (FEM) encounters several difficulties. The singularities at crack fronts require strongly refined finite element meshes that must fit the discontinuity surfaces while keeping the aspect ratio of the elements within acceptable bounds. Fully automatic generation of meshes in complex 3-D geometries satisfying these requirements is a daunting task.Partition-of-unity methods, such as the Generalized FEM (GFEM), are promising candidates to surmount the shortcomings of the standard FEM in crack growth simulations. These methods allow the representation of discontinuities and singularities in the solution via geometrical descriptions of crack surfaces, that are independent of the volume mesh, coupled with suitable enrichment functions. As a result, volume meshes need not fit crack surfaces.This work proposes an hp-version of the GFEM (hp-GFEM) for crack growth simulations. This method provides enough flexibility to build high-order discretizations for crack growth simulations. At each crack growth step, high-order approximations on locally refined meshes are automatically created in complex 3-D domains while preserving the aspect ratio of elements, regardless of crack geometry. The hp-GFEM uses explicit surface meshes composed of triangles to represent non-planar 3-D crack surfaces. By design, the proposed methodology allows the crack surface to be arbitrarily located within the GFEM mesh.To track the crack surface evolution, the proposed methodology considers an extension of the Face Offsetting Method (FOM). Based on the hp-GFEM solution, the FOM provides geometrically feasible crack front descriptions by updating the vertex positions and checking for self-intersections of the edges. The hp-GFEM with FOM allows the simulation of arbitrary crack growth independent of the volume mesh. Numerical simulations using the hp-GFEM coupled with the FOM are corroborated by experimental data and experimental observations.As an alternative to large-scale crack growth simulations, this work combines the proposed hp-GFEM with the generalized finite element method with global-local enrichment functions (GFEMgl). The proposed method allows crack growth simulations with arbitrary path in industrial level complexity problems while keeping the global mesh unchanged. Furthermore, this method allows crack growth simulations without solving the entire problem from scratch at each crack growth step. The GFEMgl for crack growth explores solutions from previous crack growth steps, hierarchical property of the enrichment functions as well as static condensation of the global-local degrees of freedom to expedite the solution process. Numerical examples demonstrate the robustness, efficiency and accuracy of the proposed GFEMgl for crack growth simulations.
机译:三维(3-D)裂纹扩展分析对于评估飞机,火箭,发动机和压力容器等承受极端载荷条件的结构至关重要。使用标准有限元方法(FEM)分析3-D任意裂纹的扩展会遇到一些困难。裂纹前沿的奇异性要求严格精炼的有限元网格,这些网格必须适合不连续面,同时将元素的纵横比保持在可接受的范围内。满足这些要求的复杂3D几何体中的网格全自动生成是一项艰巨的任务。诸如通用FEM(GFEM)之类的单元划分方法有望克服裂纹扩展模拟中标准FEM的缺点。这些方法允许通过裂纹表面的几何描述来表示溶液中的不连续点和奇异点,这些描述与体积网格无关,并带有适当的富集函数。因此,体积网格不需要适合裂纹表面。这项工作提出了GFEM的hp版本(hp-GFEM),用于裂纹扩展模拟。该方法提供了足够的灵活性来构建用于裂纹扩展模拟的高阶离散化。在每个裂纹扩展步骤,都会在复杂的3D域中自动创建局部精炼网格的高阶近似值,同时保留元素的长宽比,而不管裂纹的几何形状如何。 hp-GFEM使用由三角形组成的显式表面网格表示非平面3-D裂纹表面。通过设计,所提出的方法允许将裂纹表面任意放置在GFEM网格内。为跟踪裂纹表面的演变,所提出的方法考虑了Face Offset Method(FOM)的扩展。基于hp-GFEM解决方案,FOM通过更新顶点位置并检查边缘的自相交来提供几何上可行的裂纹前部描述。具有FOM的hp-GFEM可以模拟任意裂纹扩展,而与体积网格无关。实验数据和实验观察结果证实了使用hp-GFEM结合FOM进行的数值模拟。作为大规模裂纹扩展模拟的替代方法,这项工作将拟议的hp-GFEM与广义有限元方法与全局局部富集相结合。功能(GFEMgl)。所提出的方法允许在工业级复杂性问题中以任意路径模拟裂纹扩展,同时保持全局网格不变。此外,该方法可以模拟裂纹扩展,而无需在每个裂纹扩展步骤都从头解决整个问题。用于裂纹扩展的GFEMgl探索了先前裂纹扩展步骤,富集功能的分层特性以及全局局部自由度的静态凝聚,以加快求解过程的解决方案。数值算例表明了所提出的GFEMgl用于裂纹扩展模拟的鲁棒性,效率和准确性。

著录项

  • 作者

    Pereira Jeronymo P.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号