首页> 外文OA文献 >Redundancy in Steel Moment Frame Systems Under Seismic Excitations
【2h】

Redundancy in Steel Moment Frame Systems Under Seismic Excitations

机译:地震激励下钢矩框架系统的冗余

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although the importance and the positive effects of structural redundancy havebeen long recognized, structural redundancy became the focus of research only after the1994 Northridge and 1995 Kobe earthquakes. Several researchers have investigated thebenefit of redundancy to structural system. However, the definition and interpretation ofstructural redundancy vary significantly and it remains a controversial subject.A reliability/redundancy factor, p, was introduced in NEHRP 97, UBC 1997, andIBC 2000. It is used as a multiplier of the lateral design earthquake load and takes intoaccount only the floor area and maximum element-story shear ratio. It lacks an adequaterationale and can lead to poor structural designs (e.g. Searer G. R. and Freeman S. A.,2002, Wen and Song, 2003). A new reliability/redundancy factor, primary a function ofplan configuration of the structures such as the number of moment frames in the directionof earthquake excitations, has been adopted in NEHRP 2003 and also proposed in ASCE-7. This new factor attempts a more reasonable and mechanism-based approach, and it islikely to be implemented in other codes in the near future. However, the uniformmultiplied factor (1.3) of lateral design force for non-redundancy structures fails toaccount for different structural configurations and could lead to serious damage in apoorly designed structure. In view of the complicated nonlinear structural behaviors andthe effects of uncertainty in demand and capacity, redundancies of structures underseismic loads can be measured meaningfully only in terms of reliability of a given system.Therefore, a systematic and probabilistic study of redundancy in structural system isneeded and a uniform-risk redundancy factor is used for reliability assessment ofstructural redundancy.To accurately describe the inelastic connection behaviors, the Bouc-W en model isused and incorporated into the ABAQUS computer program. A 3-D finite element modelis developed, which allows one to examine the effects of 3-D motions including torsionoscillation and biaxial bending interaction. The capacity uncertainties of connections thatwere documented in the FEMAISAC projects are included in the Bouc-Wen model andused in the reliability analysis.Finally, a framework is proposed for evaluation of structural redundancy against·incipient collapse limit state. In this framework: (1) the maximum column drift ratio(MCDR) or biaxial spectral acceleration (BSA) is used to measure both demand andcapacity of a given building; (2) the demand and capacity analyses of a building areperformed, from which the probabilistic demand curves and the distribution of capacityare constructed. The demand of a building is determined by conducting a series of timehistory analyses under a given probability level. The capacity of a building againstincipient collapse is determined by performing the Incremental Dynamic Analyses (IDA);(3) both aleatory and epistemic uncertainties in demand and capacity are taken intoaccount; (4) based on the results of (2), a uniform-risk redundancy factor, R, for designto achieve a uniform reliability level for buildings of different redundancies is obtained.This method is also used to evaluate the redundancy of a given structural system. The pfactors in NEHRP 97 and in NEHRP 2003 and the proposed RR factor are compared andthe inadequacies of p factors are pointed out.
机译:尽管结构冗余的重要性和积极作用早已得到人们的认可,但仅在1994年Northridge和1995年神户地震之后,结构冗余才成为研究的重点。一些研究人员研究了冗余对结构系统的好处。但是,结构冗余的定义和解释相差很大,仍然是一个有争议的话题。可靠性/冗余因子p在NEHRP 97,UBC 1997和IBC 2000中引入。它用作横向设计地震荷载和乘积的乘数。仅考虑建筑面积和最大的单元-层剪切比。它缺乏足够的合理性,并可能导致不良的结构设计(例如Searer G.R.和Freeman S.A.,2002; Wen和Song,2003)。 NEHRP 2003中采用了一种新的可靠性/冗余因子,其主要是结构的平面配置(例如,地震激励方向上的弯矩数)的函数,并且在ASCE-7中也提出了新的可靠性/冗余因子。这个新因素尝试了一种更合理且基于机制的方法,并且可能在不久的将来以其他代码实现。但是,非冗余结构的侧向设计力的均匀倍增因数(1.3)无法说明不同的结构形态,并可能导致设计不良的结构受到严重破坏。考虑到复杂的非线性结构行为以及需求和容量不确定性的影响,仅根据给定系统的可靠性才能有意义地测量结构在地震荷载下的冗余度,因此,需要对系统冗余进行系统和概率的研究,并且为了准确地描述非弹性连接行为,我们使用Bouc-W en模型并将其并入ABAQUS计算机程序中,以使用统一风险冗余因子进行结构冗余的可靠性评估。开发了3D有限元模型,该模型可以检查3D运动的影响,包括扭振和双轴弯曲相互作用。 Bouc-Wen模型中包含了FEMAISAC项目中记录的连接的容量不确定性,并用于可靠性分析。最后,提出了一个框架来评估针对初始崩溃极限状态的结构冗余。在这个框架中:(1)最大列漂移率(MCDR)或双轴光谱加速度(BSA)用于测量给定建筑物的需求和容量; (2)对建筑物进行需求和容量分析,从中建立概率需求曲线和容量分布。建筑物的需求是通过在给定的概率水平下进行一系列时间历史分析来确定的。通过执行增量动态分析(IDA)来确定建筑物抵御初期倒塌的能力;(3)考虑到需求和容量的不确定性和认知不确定性; (4)基于(2)的结果,获得了用于设计的统一风险冗余因子R,以实现不同冗余度建筑物的统一可靠性水平。该方法还用于评估给定结构系统的冗余度。比较了NEHRP 97和NEHRP 2003中的p因子和建议的RR因子,指出了p因子的不足之处。

著录项

  • 作者

    Liao K-W.;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号