首页> 外文OA文献 >Interfacial properties of epitaxial gold nanocrystals supported on rutile titanium dioxide
【2h】

Interfacial properties of epitaxial gold nanocrystals supported on rutile titanium dioxide

机译:金红石型二氧化钛负载外延金纳米晶的界面性质

摘要

Interfacial science is a fascinating field in materials science. From grain boundaries in bulk materials to interfaces in thin films, the properties of interfaces can lead to novel functionality in materials. The effect of interfaces on a material???s properties becomes amplified as the proportion of interfaces increases in relation to the volume of the material, for example in supported nanocrystals (NCs). While interfaces in bulk materials and thin films have been well characterized, atomic level characterization of NC interfaces is limited. The aim of this thesis is to develop a general set of methods to comprehensively study NC interfaces including interfacial atomic structure, interfacial energy and interfacial line tension. We have selected Au-TiO2 interface that has significant attention for its role in the remarkably low temperature catalytic oxidation of carbon monoxide to carbon dioxide. One of the best methods to study interfaces in bulk materials and thin films is cross sectional Transmission Electron Microscopy (TEM). Particularly with the advent of aberration corrected electron microscopy the experimental power to probe interfaces has increased manifold. However it is difficult to prepare NCs in the cross sectional viewing geometry for TEM without damaging the NCs using conventional specimen preparation methods. To enable this work, firstly a specimen preparation method was developed to support epitaxial Au NCs in the cross sectional geometry for TEM investigations without damaging the NCs. The interfacial atomic structure was investigated using aberration corrected Scanning Transmission Electron Microscopy (STEM) with a spatial resolution of ~1??. Interfacial energy of the NCs has been measured from cross sectional STEM images of NCs. It is found that Au NCs with the epitaxial relationship Au(111)[-110] || TiO2 (110)[001] have the largest adhesion to TiO2 (110) with an interfacial energy of 0.61??0.05 J/m2 (assuming ??TiO2(110) = 0.33 J/m2 and ??Au(111) = 1.283 J/m2). The stability of this epitaxy is attributed to the nucleation of Au atoms in the missing titanium row of a (1x2) TiO2 (110) reconstruction ??? resulting in an interfacial reconstruction of Au, Ti and O atoms which lowers the interfacial energy and enhances the adhesion of Au NCs to TiO2 (110). It has been found that smaller Au NCs dewet more than bigger Au NCs on TiO2 (110). The dewetting is attributed to the effect of interfacial line tension. In order to measure interfacial line tension, the Wulff-Kaishew was modified to incorporate the effect of interfacial line tension on NC shapes. The lower limit of interfacial line tension was measured to be 0.85??0.24 eV/?? (1.36??0.38 x 10-9 N) (assuming ??TiO2(110) = 0.33 J/m2 and ??Au(111) = 1.283 J/m2) for NCs with the epitaxial relationship of Au(111)[-110] || TiO2 (110)[001].Since TEM/STEM studies are limited to individual NCs, the formation of epitaxial Au NCs was also probed using Reflection High Energy Electron Diffraction (RHEED) of Au NCs on flat TiO2 (110) supports in order to obtain structural information averaged from a larger number of NCs. The RHEED study confirms the epitaxial relationship of Au NCs as Au(111)[-110] || TiO2 (110)[001], irrespective of the details of the starting TiO2 (110) surface structure and the annealing atmosphere. On reconstructed (1x2) TiO2 (110) surfaces, the onset and completion of epitaxy formation occurred at much lower temperatures than unreconstructed TiO2 (110) surfaces. This shows that Au prefers to nucleate and grow as epitaxial NCs over (1x2) reconstructed TiO2 (110) in agreement with TEM/STEM images of NCs.
机译:界面科学是材料科学的一个引人入胜的领域。从散装材料中的晶界到薄膜中的界面,界面的特性都可以导致材料的新颖功能。当界面的比例相对于材料的体积增加时,例如在负载的纳米晶体(NCs)中,界面对材料性能的影响变得更大。虽然已经很好地表征了散装材料和薄膜中的界面,但NC界面的原子级表征受到限制。本文的目的是开发一套通用的方法来全面研究数控界面,包括界面原子结构,界面能量和界面线张力。我们选择了Au-TiO2界面,该界面在将一氧化碳转化为二氧化碳的极低温催化氧化中起着重要的作用。研究散装材料和薄膜界面的最佳方法之一是截面透射电子显微镜(TEM)。特别是随着像差校正电子显微镜的出现,探测界面的实验能力得到了提高。但是,在不使用常规样本制备方法损坏NC的情况下,很难以TEM的横截面观察几何形状制备NC。为了进行这项工作,首先开发了一种样品制备方法,以在横截面几何形状中支持外延Au NCs进行TEM研究,而不会损坏NCs。使用像差校正的扫描透射电子显微镜(STEM)对界面原子结构进行了研究,其空间分辨率约为1-10。 NC的界面能已从NC的横截面STEM图像中进行了测量。发现具有外延关系Au(111)[-110] ||的Au NCs TiO2(110)[001]对TiO2(110)的附着力最大,界面能为0.61≤0.05J / m2(假设ΔTiO2(110)= 0.33 J / m2和ΔuAu(111)= 1.283) J / m2)。这种外延的稳定性归因于(1x2)TiO2(110)重建体中缺失的钛行中Au原子的成核。导致Au,Ti和O原子的界面重建,从而降低了界面能并增强了Au NCs对TiO2的粘附力(110)。已经发现,较小的Au NCs在TiO2(110)上比较大的Au NCs润湿更大。脱湿归因于界面线张力的影响。为了测量界面线张力,对Wulff-Kaishew进行了修改,以合并界面线张力对NC形状的影响。界面线张力的下限经测量为0.85≤0.24eV/Ω。 (1.36≤0.38x 10-9 N)(假设TiO2(110)= 0.33 J / m2和ΔuAu(111)= 1.283 J / m2)对于具有Au(111)外延关系的NCs 110] || TiO2(110)[001]。由于TEM / STEM研究仅限于单个NC,所以还通过在平坦的TiO2(110)载体上使用Au NC的反射高能电子衍射(RHEED)探测了外延Au NC的形成。获得大量NC的平均结构信息。 RHEED研究证实了Au NCs的外延关系为Au(111)[-110] || TiO 2(110)[001],与起始TiO 2(110)的表面结构和退火气氛的细节无关。在重建的(1x2)TiO2(110)表面上,外延形成的开始和完成发生在比未重建的TiO2(110)表面低得多的温度下。这表明与(1x2)重建的TiO2(110)相比,Au更喜欢作为外延NC形核并生长,这与NC的TEM / STEM图像一致。

著录项

  • 作者

    Sivaramakrishnan Shankar;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号