首页> 外文OA文献 >A foreground detection system for automatic surveillance
【2h】

A foreground detection system for automatic surveillance

机译:一种用于自动监视的前景检测系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automated surveillance has long been an application goal of computer vision.An integral part of such surveillance systems is concerned with accuratelysegmenting foreground objects from the static background in the videos. Inthis thesis we introduce a novel system for background subtraction, whichtakes a di erent approach than the conventional background subtraction systems.We make the assumption that the video background is stationary andthe foreground objects take up only a small portion of the entire frame at anygiven time. This speci c assumption allows us to formulate the foregroundsignal as a sparse additive error introduced to otherwise clean background signal.We outline the algorithm for performing background subtraction usinglinear programming, and demonstrate accurate segmentations of foregroundobjects under realistic surveillance scenarios. The proposed method is on parwith the state of the art approaches for accurately segmenting the foregroundunder challenging conditions. Furthermore we propose several methods forbuilding a set of bases to represent the background and provide empiricaljusti cation of their e ectiveness.
机译:自动化监视长期以来一直是计算机视觉的应用目标。此类监视系统不可或缺的一部分涉及从视频的静态背景中准确分割前景对象。在本文中,我们介绍了一种新颖的背景减影系统,该系统与常规背景减影系统采用了不同的方法。我们假设视频背景是静止的,并且在任何给定时间前景对象仅占据整个帧的一小部分。这种特殊的假设使我们可以将前景信号公式化为稀疏的加性误差,以引入原本不干净的背景信号。我们概述了使用线性编程执行背景扣除的算法,并演示了在实际监视场景下前景对象的精确分割。所提出的方法与在挑战性条件下准确分割前景的现有技术水平相近。此外,我们提出了几种方法来建立一组代表背景的基础并提供其有效性的经验证明。

著录项

  • 作者

    Dikmen Mert;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号