首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Automatic Detection and Recognition of Pig Wasting Diseases Using Sound Data in Audio Surveillance Systems
【2h】

Automatic Detection and Recognition of Pig Wasting Diseases Using Sound Data in Audio Surveillance Systems

机译:在音频监视系统中使用声音数据自动检测和识别猪的浪费病

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automatic detection of pig wasting diseases is an important issue in the management of group-housed pigs. Further, respiratory diseases are one of the main causes of mortality among pigs and loss of productivity in intensive pig farming. In this study, we propose an efficient data mining solution for the detection and recognition of pig wasting diseases using sound data in audio surveillance systems. In this method, we extract the Mel Frequency Cepstrum Coefficients (MFCC) from sound data with an automatic pig sound acquisition process, and use a hierarchical two-level structure: the Support Vector Data Description (SVDD) and the Sparse Representation Classifier (SRC) as an early anomaly detector and a respiratory disease classifier, respectively. Our experimental results show that this new method can be used to detect pig wasting diseases both economically (even a cheap microphone can be used) and accurately (94% detection and 91% classification accuracy), either as a standalone solution or to complement known methods to obtain a more accurate solution.
机译:猪消瘦疾病的自动检测是成群饲养猪管理中的重要问题。此外,呼吸系统疾病是造成猪群死亡和集约化养猪生产效率下降的主要原因之一。在这项研究中,我们提出了一种有效的数据挖掘解决方案,用于在音频监视系统中使用声音数据检测和识别猪消瘦病。在这种方法中,我们通过自动的猪声音采集过程从声音数据中提取梅尔频率倒谱系数(MFCC),并使用两级结构:支持向量数据描述(SVDD)和稀疏表示分类器(SRC)分别作为早期异常检测器和呼吸系统疾病分类器。我们的实验结果表明,该新方法既可以作为独立解决方案,也可以作为对已知方法的补充,既可以经济(甚至可以使用便宜的麦克风)来检测猪浪费性疾病,也可以准确地(94%的检测率和91%的分类准确度)来检测以获得更准确的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号