首页> 外文OA文献 >RoboBat: dynamics and control of flapping flight micro aerial vehicles
【2h】

RoboBat: dynamics and control of flapping flight micro aerial vehicles

机译:RoboBat:拍打飞行微型飞行器的动力学和控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Flapping flight micro aerial vehicles (MAVs) are of interest to the aerospace and robotics communities for their maneuverability in comparison to tradition fixed wing and rotary aircraft. However they present numerous challenges in the fields of dynamics, stability and control. This thesis examines the dynamics and kinematics of robotic flapping flight, the design and construction of a robotic bat test bed mounted on a 3-DOF pendulum, and subsequent control experiments using the test bed. The robotic bat test bed is capable of exhibiting different wing motions and is used to test the feasibility of controlling the motions of the robotic bat by using the phase differences between coupled nonlinear oscillators called central pattern generators (CPGs). A dynamic model for the robotic bat based on the complex wing kinematics is presented, and the wing kinematic motions themselves are analyzed using a high-speed motion capture system. Mechanical coupling effects which deviate from theoretical assumptions are investigated as well. Open loop experiments analyzing the steady state behavior of the bat's flight with varying phase differences showed a change of the pitch angle while elevation and forward velocity remains constant. Closed loop experiments indeed validate that control dimension reduction is achievable by controlling the phase differences of CPG oscillators. Unstable longitudinal modes are stabilized and controlled using only control of two parameters: phase difference and flapping frequency. Transition between flapping flight and gliding flight is analyzed. This shows promising results regarding the relation between phase differences of wing motions and longitudinal stability, and lays the groundwork for future research and experimentation in flapping flight MAVs.
机译:与传统的固定翼和旋翼飞机相比,扑翼飞行微型航空器(MAV)的机动性引起了航空航天和机器人领域的关注。然而,它们在动力学,稳定性和控制领域提出了许多挑战。本文研究了机器人拍打飞行的动力学和运动学,安装在3-DOF摆上的蝙蝠机器人试验台的设计和构造,以及随后使用该试验台进行的控制实验。蝙蝠机器人试验台能够表现出不同的机翼运动,并用于通过使用称为中央模式发生器(CPG)的耦合非线性振荡器之间的相位差来测试控制蝙蝠机器人运动的可行性。提出了基于复杂机翼运动学的蝙蝠机器人动态模型,并利用高速运动捕获系统对机翼运动本身进行了分析。还研究了偏离理论假设的机械耦合效应。开环实验分析了具有不同相位差的蝙蝠飞行的稳态行为,表明俯仰角发生了变化,而仰角和前进速度保持不变。闭环实验的确证实了通过控制CPG振荡器的相位差可以实现控制尺寸的减小。仅使用两个参数的控制即可稳定和控制不稳定的纵向模式:相位差和拍动频率。分析了扑翼飞行和滑行飞行之间的过渡。这在机翼运动的相位差与纵向稳定性之间的关系方面显示出令人鼓舞的结果,并为未来的轻型飞行式轻型无人机的研究和实验奠定了基础。

著录项

  • 作者

    Kuang Patrick;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号