首页> 外文OA文献 >A malware analysis and detection system for mobile devices / Ali Feizollah
【2h】

A malware analysis and detection system for mobile devices / Ali Feizollah

机译:移动设备/ ali Feizollah的恶意软件分析和检测系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Smartphones, tablets, and other mobile devices have quickly become ubiquitous due to their highly personal and powerful attributes. Android has been the most popular mobile operating system. Such popularity, however, also extends to attackers. The amount of Android malware has risen steeply during the last few years, making it the most targeted mobile operating system. Although there have been important advances made on malware analysis and detection in traditional PCs during recent decades, adopting and adapting those methods to mobile devices poses a considerable challenge. Power consumption is one major constraint that makes traditional detection methods impractical for mobile devices, while cloud-based techniques raise many privacy concerns. This study examines the problem of Android malware, and aims to develop and implement new approaches to help users confront such threats more effectively, considering the limitations of these devices. First, we present a comprehensive analysis on the development of mobile malware, specifically Android, over recent years, as well as the most useful and salient analysis and detection methods for Android malware. We also discuss a compilation of available tools for Android malware analysis. Secondly, we propose a number of new and distinctive Android malware analysis and detection methods. More specifically, we introduce AndroDialysis, which is a static analysis method. Recent research has focused on analysing Android Intent in the XML file. We propose a new method of analysing Android Intent in Java code, which includes implicit intent and explicit intent. We used a Drebin data sample, which is a collection of 5,560 applications, as well as clean data sample containing 1,846 applications. The results show a detection rate of 91% using Android Intent against 83% using Android permission. We also introduce a dynamic analysis method, AndroPsychology, in order to analyse the network communications of Android applications. We extracted 30 different features from network traffic. We then used feature selection algorithms and deep learning algorithms to build a detection model. The results show that network traffic is an appropriate candidate for Android malware detection. Finally, we assembled AndroDialysis and AndroPsychology in order to build a comprehensive analysis and detection system for Android, called DroidProtect. Unlike current systems that either perform analyses on the device or send the whole application to a server for analyses, our system has the distinction of extracting features on the device and analysing them on the Google App Engine servers using an offloading technique. Our extensive experiments show that the energy consumption of the proposed system is less than currently available systems.
机译:智能手机,平板电脑和其他移动设备因其高度个性化和强大的功能而迅速普及。 Android一直是最受欢迎的移动操作系统。但是,这种流行也扩展到了攻击者。在过去的几年中,Android恶意软件的数量急剧上升,使其成为最具针对性的移动操作系统。尽管在最近几十年中,传统PC在恶意软件分析和检测方面取得了重要进展,但采用这些方法并使之适应于移动设备仍然是一个巨大的挑战。功耗是使传统检测方法不适用于移动设备的主要限制因素之一,而基于云的技术引起了许多隐私问题。这项研究研究了Android恶意软件的问题,并考虑到这些设备的局限性,旨在开发和实施新方法来帮助用户更有效地应对此类威胁。首先,我们对移动恶意软件(尤其是Android)在最近几年的发展进行了全面的分析,以及对Android恶意软件最有用和最显着的分析和检测方法。我们还将讨论用于Android恶意软件分析的可用工具的汇编。其次,我们提出了许多新颖独特的Android恶意软件分析和检测方法。更具体地说,我们介绍了AndroDialysis,这是一种静态分析方法。最近的研究集中在分析XML文件中的Android Intent。我们提出了一种分析Java代码中Android意图的新方法,该方法包括隐式意图和显式意图。我们使用了Drebin数据样本,该样本包含5560个应用程序,以及包含1846个应用程序的干净数据样本。结果显示,使用Android Intent的检测率为91%,而使用Android权限的检测率为83%。我们还介绍了一种动态分析方法AndroPsychology,以分析Android应用程序的网络通信。我们从网络流量中提取了30种不同的功能。然后,我们使用特征选择算法和深度学习算法来构建检测模型。结果表明,网络流量适合检测Android恶意软件。最后,我们组装了AndroDialysis和AndroPsychology,以构建用于Android的综合分析和检测系统DroidProtect。与当前的在设备上执行分析或将整个应用程序发送到服务器进行分析的系统不同,我们的系统的区别在于提取设备上的功能并使用卸载技术在Google App Engine服务器上进行分析。我们的广泛实验表明,所提出系统的能耗低于当前可用系统。

著录项

  • 作者

    Ali Feizollah;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号