首页> 外文OA文献 >Techno-economic environmental risk analysis of advanced biofuels for civil aviation
【2h】

Techno-economic environmental risk analysis of advanced biofuels for civil aviation

机译:民航先进生物燃料的技术经济环境风险分析

摘要

Commercial aviation has demonstrated its ability to be a key driver of global socio-economic growth to this date. This growth, resulting from an ever increasing need for air-travel, has been observed to be environmentally unsustainable. Any technological enhancements to the upcoming fleet of aircraft or operational improvements have been overshadowed by this very demand for air-travel. Any further investigation into innovative concepts and optimisation approaches bring in trade-off difficulties due to limitations in current technology. This creates a constraint on design space exploration. The need to mitigate civil aviation’s environmental impact has necessitated this sector to expand its frontier and seek radical technologies. Among a range of other technologies, advanced biofuels for civil jet engines have been claimed to be one of the most promising solutions.“Techno-economic Environmental Risk Analysis (TERA) of Advanced Biofuels for Civil Aviation” is a study that contributes to knowledge through conception plus application of quantitative/ qualitative approaches to assess the technical viability, financial feasibility and environmental competence of 2nd and 3rd generation biojet fuels, through their application into the existing scenario of civil aviation, against that of the fossil-derived conventional jet fuel (Conv.Jet fuel). TERA of advanced biofuels aims to accomplish the aforementioned through a holistic, multi-disciplinary study entailing life cycle studies, carbon-foot printing, sustainability analysis, fuel chemistry, virtual studies comprising combustion thermodynamic, engine/aircraft performance and emission prediction, economic studies entailing biofuel price prediction and business case analysis as opposed to earlier studies.TERA of Advanced biofuels study entails development of elaborate life cycle models, ALCEmB (Assessment of Life Cycle Emissions of Biofuels) and ALCCoB (Assessment of Life Cycle Cost of Biofuels) to predict life cycle emissions and costs, respectively, of the advanced biofuels from the point of raw material generation to the point of finished product consumption (a “cradle-grave” approach). A virtual experiment, to assess the impact of the “performance” properties of the advanced biofuels on a representative twin-shaft turbofan/airframe combination, relative to that of Conv.Jet fuel, was also undertaken through numerical modelling and simulation.Evaluation through ALCEmB revealed that Camelina-SPK, Microalgae-SPK and Jatropha-SPK delivered 70%, 58% and 64% savings in life cycle emission, relative to Conv.Jet fuel. The Net Energy Ratio (NER) analysis indicates that current technology for the biofuel processing is energy efficient and technically feasible. An elaborate post-combustion gas property evaluation infers that the Bio-SPKs exhibit improved thermodynamic behaviour. This thermodynamic effect has a positive impact on mission-level fuel consumption which reflected as fuel savings in the range of 3 - 3.8% and, therefore, emission savings of 5.8-6.3% in CO2 and 7.1-8.3% in LTO NOx, relative to that of Jet-A1. An economic feasibility analysis which entails prediction of hypothetical biofuel price prediction and its impact on direct operating cost (DOC) of an aircraft which infers that Bio-SPKs, over a user-defined medium-range mission profile, costs an additional 95-100% in terms of aircraft DOC, relative to that operated with conventional Jet-fuel, within short (2020) and medium (2020). However, the advanced biofuels are able to exhibit financial competence from 2020 onwards, relative to that of Conv.Jet fuel. However, the Bio-SPKs exhibit this economic feasibility only against a backdrop of persistent Conv.Jet fuel price volatility and severe environmental taxation between the analysis periods (2020-2075)
机译:迄今为止,民航业已证明其有能力成为全球社会经济增长的主要推动力。人们发现,由于对空中旅行的需求不断增长,这种增长在环境上是不可持续的。这种对空中旅行的需求掩盖了即将到来的飞机机队的任何技术改进或运营改进。由于当前技术的局限性,对创新概念和优化方法的任何进一步研究都会带来取舍困难。这对设计空间探索产生了限制。为了减轻民航业对环境的影响,该部门必须扩大自己的领域并寻求先进的技术。在一系列其他技术中,用于民用喷气发动机的先进生物燃料被认为是最有前途的解决方案。“用于民航的先进生物燃料的技术经济环境风险分析(TERA)”是一项通过知识为知识做出贡献的研究。概念和定量/定性方法的应用,以评估第二代和第三代生物喷气燃料的技术可行性,财务可行性和环境能力,方法是将其应用于民航的现有情景中,而不是化石衍生的传统喷气燃料(Conv 。喷气燃料)。先进生物燃料的TERA旨在通过涉及生命周期研究,碳足印,可持续性分析,燃料化学,包括燃烧热力学,发动机/飞机性能和排放预测的虚拟研究,涉及经济研究的整体,多学科研究来实现上述目标生物燃料价格预测和业务案例分析,而不是早期的研究。高级生物燃料研究的TERA需要开发精细的生命周期模型,ALCEmB(生物燃料生命周期排放评估)和ALCCoB(生物燃料生命周期成本评估)来预测寿命从原材料生产到成品消费,分别循环了先进生物燃料的排放和成本(“摇篮-坟墓”方法)。通过数值建模和仿真,还进行了虚拟实验,以评估先进生物燃料的“性能”特性对代表性双轴涡轮风扇/机身组合(相对于喷气喷气燃料)的影响。通过ALCEmB进行评估据透露,与Conv.Jet燃油相比,Camelina-SPK,Microalgae-SPK和Jatropha-SPK的生命周期排放节省了70%,58%和64%。净能比(NER)分析表明,目前用于生物燃料加工的技术是节能的并且在技术上可行。详尽的燃烧后气体特性评估推断出Bio-SPK具有改善的热力学行为。这种热力学效应对任务级别的燃料消耗有积极的影响,这反映在燃料节省量的3-3.8%范围内,因此,相对于二氧化碳,CO2的排放节省量为5.8-6.3%,LTO NOx的排放节省量为7.1-8.3% Jet-A1的一种经济可行性分析,其中包含对假设生物燃料价格预测的预测及其对飞机直接运营成本(DOC)的影响,这推断出Bio-SPK在用户定义的中程任务配置文件中额外花费95-100%在短期(2020)和中型(2020)内,相对于使用传统喷气燃料的DOC而言。但是,相对于Conv.Jet燃料,先进的生物燃料从2020年起将具有财务能力。但是,仅在分析期间(2020-2075)之间持续的喷气式飞机燃油价格波动和严厉的环境税收的背景下,Bio-SPK才显示出这种经济可行性

著录项

  • 作者

    Lokesh Kadambari;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号