首页> 外文OA文献 >A dynamic convergence control scheme for the solution of the radial equilibriumequation in through-flow analyses
【2h】

A dynamic convergence control scheme for the solution of the radial equilibriumequation in through-flow analyses

机译:解决径向平衡问题的动态收敛控制方案流量分析中的方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the most frequently encountered numerical problems in scientific analysesis the solution of non-linear equations. Often the analysis of complex phenomenafalls beyond the range of applicability of the numerical methods available inthe public domain, and demands the design of dedicated algorithms that willapproximate, to a specified precision, the mathematical solution of specificproblems. These algorithms can be developed from scratch or through theamalgamation of existing techniques. The accurate solution of the full radialequilibrium equation (REE) in streamline curvature (SLC) through-flow analysespresents such a case. This article discusses the development, validation, andapplication of an 'intelligent' dynamic convergence control (DCC) algorithm forthe fast, accurate, and robust numerical solution of the non-linear equations ofmotion for two-dimensional flow fields. The algorithm was developed to eliminatethe large extent of user intervention, usually required by standard numericalmethods. The DCC algorithm was integrated into a turbomachinery design andperformance simulation software tool and was tested rigorously, particularly atcompressor operating regimes traditionally exhibiting convergence difficulties(i.e. far off-design conditions). Typical error histories and comparisons ofsimulated results against experimental are presented in this article for aparticular case study. For all case studies examined, it was found that thealgorithm could successfully 'guide' the solution down to the specified errortolerance, at the expense of a slightly slower iteration process (compared to aconventional Newton-Raphson scheme). This hybrid DCC algorithm can also find usein many other engineering and scientific applications that require the robustsolution of mathematical problems by numerical instead of analytical means.
机译:科学分析中最常遇到的数值问题之一是非线性方程的解。通常,对复杂现象的分析超出了公共领域中可用的数值方法的适用范围,并且需要设计专用算法,该算法将以特定的精度近似特定问题的数学解决方案。这些算法可以从头开始或通过现有技术的融合而开发。在流线曲率(SLC)通流分析中完整径向平衡方程(REE)的精确解表示了这种情况。本文讨论了“智能”动态收敛控制(DCC)算法的开发,验证和应用,该算法可用于二维流场的非线性运动方程的快速,准确和鲁棒的数值解。开发该算法是为了消除通常由标准数值方法所需的大量用户干预。 DCC算法已集成到涡轮机械设计和性能仿真软件工具中,并经过了严格的测试,特别是在传统上表现出收敛困难(即远远超出设计条件)的压缩机运行状态下。本文针对典型的案例研究,介绍了典型的错误历史以及仿真结果与实验结果的比较。对于所有检查的案例研究,发现算法可以成功地将解决方案“引导”至指定的容错范围,但代价是迭代过程略慢(与传统的Newton-Raphson方案相比)。这种混合DCC算法还可在许多其他工程和科学应用中找到用途,这些应用要求通过数值而不是分析手段来可靠地解决数学问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号