首页> 外文OA文献 >Accuracy of high order density based compressible methods in low mach vortical flows
【2h】

Accuracy of high order density based compressible methods in low mach vortical flows

机译:低马赫涡流中基于高阶密度的可压缩方法的准确性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new, well posed, two-dimensional two-mode incompressible Kelvin{Helmholtz instability testcase has been chosen to explore the ability of a compressible algorithm, Godunov-type schemewith the low Mach number correction, which can be used for simulations involving low Machnumbers, to capture the observed vortex pairing process due to the initial Kelvin{Helmholtzinstability growth on low resolution grid. The order of accuracy, 2nd and 5th , of the compressiblealgorithm is also highlighted.The observed vortex pairing results and the corresponding momentum thickness of the mixinglayer against time are compared with results obtained using the same compressible algorithm butwithout the low Mach number correction and three other methods, a Lagrange remap methodwhere the Lagrange phase is 2nd order accurate in space and time while the remap phase is 3rdorder accurate in space and 2nd order accurate in time, a 5th order accurate in space and timenite di erence type method based on the wave propagation algorithm and a 5th order spatialand 3rd order temporal accurate Godunov method utilising the SLAU numerical ux with lowMach capture property.The ability of the compressible ow solver of the commercial software, ANSYS Fluent, in solvinglow Mach ows is also examined for both implicit and explicit methods provided in the compressibleow solver.In the present two dimensional two mode incompressible Kelvin{Helmholtz instability test case,the ow conditions, stream velocities, length-scales and Reynolds numbers, are taken from anexperiment conducted on the observation of vortex pairing process. Three di erent values of lowMach numbers, 0:2, 0:02 and 0:002 have been tested on grid resolutions of 24 24, 32 32, 48 48and 64 64 on all the di erent numerical approaches.The results obtained show the vortex pairing process can be captured on a low grid resolutionwith the low Mach number correction applied down to 0:002 with 2nd and 5th order Godunovtypemethods. Results also demonstrate clearly that a speci cally designed low Mach correctionor ux is required for all algorithms except the Lagrange-remap approach, where dissipation isindependent of Mach number. ANSYS Fluent's compressible ow solver with the implicit timestepping method also captures the vortex pairing on low resolutions but excessive dissipationprevents the instability growth when explicit time stepping method is applied.
机译:选择了一个新的,状态良好的二维两模式不可压缩Kelvin {Helmholtz不稳定性测试用例,以探索具有低马赫数校正的可压缩算法Godunov型方案的能力,该算法可用于涉及低马赫数的仿真,捕获由于低分辨率网格上的初始Kelvin {Helmholtz不稳定性增长而引起的观测到的涡旋配对过程。还突出显示了可压缩算法的精度第2级和第5级,并将观察到的涡旋配对结果和混合层随时间变化的相应动量厚度与使用相同可压缩算法但未进行低马赫数校正和其他三个算法获得的结果进行了比较方法,一种Lagrange重映射方法,其中Lagrange相位在空间和时间上均为2阶,而remap相位在空间上是3级且在时间上是2阶,在空间和时间上均为5阶是基于波传播的差分方法算法和利用具有低Mach捕获特性的SLAU数值ux的五阶空间和三阶时间精确Godunov方法。还研究了商用软件ANSYS Fluent的可压缩流求解器求解低Mach流的能力,包括隐式方法和显式方法在当前二维二维模式下不可压缩开尔文(Helmholtz)不稳定性测试案例,流动条件,流速度,长度尺度和雷诺数均来自对涡流配对过程进行观察的实验。在所有不同的数值方法上,分别以24、24、32、32、48、48和64 64的网格分辨率测试了三个低马赫数的不同值0:2、0:02和0:002,所得结果显示出涡旋可以在低网格分辨率下捕获配对过程,并使用2阶和5阶Godunovtype方法将低马赫数校正应用于0:002。结果还清楚地表明,除拉格朗日重映射方法(耗散与马赫数无关)外,所有算法均需要专门设计的低马赫校正或ux。带有隐式时间步长方法的ANSYS Fluent的可压缩流求解器还捕获了低分辨率下的涡旋对,但采用显式时间步长方法时,过多的耗散阻止了不稳定的增长。

著录项

  • 作者

    Shanmuganathan Sanjeev;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号