首页> 外文OA文献 >Erosion, corrosion and erosion-corrosion of EB PVD thermal barrier coatings
【2h】

Erosion, corrosion and erosion-corrosion of EB PVD thermal barrier coatings

机译:EB PVD热障涂层的冲蚀,腐蚀和腐蚀腐蚀

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electron beam (EB) physical vapour deposited (PVD) thermal barrier coatings(TBCs) have been used in gas turbine engines for a number of years. The primarymode of failure is attributed to oxidation of the bond coat and growth of thethermally grown oxide (TGO), the alumina scale that forms on the bond coat andto which the ceramic top coat adheres. Once the TGO reaches a criticalthickness, the TBC tends to spall and expose the underlying substrate to the hotgases. Erosion is commonly accepted as a secondary failure mechanism, whichthins the TBC thus reducing its insulation capability and increasing the TGOgrowth rate. In severe conditions, erosion can completely remove the TBC overtime, again resulting in the exposure of the substrate, typically Ni-basedsuperalloys. Since engine efficiency is related to turbine entry temperature(TET), there is a constant driving force to increase this temperature. With thisdrive for higher TETs comes corrosion problems for the yttria stabilisedzirconia (YSZ) ceramic topcoat. YSZ is susceptible to attack from moltencalciumâ  magnesiumâ  aluminaâ  silicates (CMAS) which degrades the YSZ bothchemically and micro-structurally. CMAS has a melting point of around 1240 à °Cand since it is common in atmospheric dust it is easily deposited onto gasturbine blades. If the CMAS then melts and penetrates into the ceramic, the lifeof the TBC can be significantly reduced. This paper discusses the variousfailure mechanisms associated with the erosion, corrosion anderosionâ  corrosion of EB PVD TBCs. The concept of a dimensionless ratio D/d,where D is the contact footprint diameter and d is the column diameter, as ameans of determining the erosion mechanism is introduced and discussed for EB
机译:电子束(EB)物理气相沉积(PVD)隔热涂层(TBC)已在燃气涡轮发动机中使用了很多年。失效的主要模式归因于粘结层的氧化和热生长氧化物(TGO)的生长,热氧化层形成在粘结层上,并且陶瓷面漆粘附于其上。一旦TGO达到临界厚度,TBC往往会剥落并使下层基材暴露于热气中。腐蚀通常被认为是次要的故障机制,它使TBC变薄,从而降低了TBC的绝缘能力并提高了TGO的生长速率。在严酷的条件下,腐蚀会随着时间的流逝完全消除TBC,再次导致基材(通常为镍基高温合金)暴露。由于发动机效率与涡轮进气温度(TET)有关,因此存在恒定的驱动力来提高该温度。使用这种驱动器提高TET值会带来氧化钇稳定氧化锆(YSZ)陶瓷面漆的腐蚀问题。 YSZ易受熔融钙,镁,铝,铝酸盐,硅酸盐(CMAS)的攻击,从而在化学和微观结构上使YSZ降解。 CMAS的熔点约为1240°C,由于它在大气粉尘中很常见,因此很容易沉积到燃气轮机叶片上。如果CMAS然后熔化并渗入陶瓷中,则TBC的寿命会大大缩短。本文讨论了与EB PVD ​​TBC的腐蚀,腐蚀和侵蚀–腐蚀相关的各种失效机理。无量纲比D / d的概念,其中D是接触覆盖区直径,d是柱直径,作为确定腐蚀机理的手段已针对EB进行了介绍和讨论

著录项

  • 作者

    Wellman R. G.; Nicholls J. R.;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号