首页> 外文OA文献 >UDRF: Multi-resource Fairness for Complex Jobs with Placement Constraints
【2h】

UDRF: Multi-resource Fairness for Complex Jobs with Placement Constraints

机译:UDRF:具有安置约束的复杂工作的多资源公平性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we study the problem of multiresource fairness in systems with multiple users. Each user requires to run one or more complex jobs that consist of multiple interconnected tasks. A job is considered finished when all its corresponding tasks have been executed in the system. Tasks can have different resource requirements. Because of special demands on particular hardware or software, tasks can have placement constraints limiting the type of machines they can run on. We develop User-Dependence Dominant Resource Fairness (UDRF), a generalized version of max-min fairness that combines graph theory and the notion of dominant resource shares to ensure multi-resource fairness between users with complex jobs. UDRF satisfies several desirable properties including strategy proofness, which ensures that users do not benefit from misreporting their true resource demands. We propose an offline algorithm that computes optimal UDRF allocation while the scheduling process can be to be decentralize across multiple schedulers. But optimality comes at a cost, especially for systems where schedulers need to make thousands of online scheduling decisions per second. Therefore, we develop a lightweight online algorithm that closely approximates UDRF. Large-scale simulations driven by Google cluster-usage traces show that UDRF achieves better resource utilization and throughput compared to the current state-of-the-art in multi-resource fair allocation.
机译:在本文中,我们研究了具有多个用户的系统中的多资源公平性问题。每个用户都需要运行一个或多个由多个相互关联的任务组成的复杂作业。当作业的所有相应任务都已在系统中执行时,该作业被视为完成。任务可能具有不同的资源要求。由于对特定硬件或软件的特殊要求,任务可能会受到布局限制,从而限制了它们可以在其上运行的计算机的类型。我们开发了用户依赖的主导资源公平性(UDRF),它是最大-最小公平性的通用版本,结合了图论和主导资源份额的概念,以确保具有复杂工作的用户之间的多资源公平性。 UDRF满足了一些理想的属性,包括策略验证性,从而确保用户不会因错误地报告其真实资源需求而受益。我们提出了一种离线算法,该算法可以计算最佳UDRF分配,同时可以在多个调度程序之间分散调度过程。但是,优化要付出代价,特别是对于调度程序需要每秒做出数千个在线调度决策的系统。因此,我们开发了一种轻量级的在线算法,该算法非常接近UDRF。由Google集群使用轨迹驱动的大规模仿真表明,与当前多资源公平分配中的最新技术相比,UDRF可以实现更好的资源利用率和吞吐量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号