首页> 外文OA文献 >Ground Source Heat Pump in District Heating and Cooling System in Elverum - Grunnvannsbasert varmepumpe for fjernvarme og kjøling i Elverum
【2h】

Ground Source Heat Pump in District Heating and Cooling System in Elverum - Grunnvannsbasert varmepumpe for fjernvarme og kjøling i Elverum

机译:Elverum集中供热和制冷系统中的地源热泵-Elverum集中供热和制冷的地下水基热泵

摘要

The project presented in this master thesis work was evaluated from September 2015 -January 2016 under the supervision of Professor Trygve Magne Eikevik , Department ofEnergy and Process Engineering at the Norwegian University of Science andTechnology, in collaboration with the Project Manager Randi Kalskin Ramstad,Department of Geology and Mineral Resources Engineering at the Norwegian Universityof Science and Technology.The paper is divided into seven main chapters as follows:Chapter 1 is a general introduction to the project.Chapter 2 provides a quick summary of the origin of the geothermal energy with somehistorical data.Chapter 3 reviews the actual state of the art regarding the Geothermal Heat Pumps, byproviding a rapid overview of all the technologies (Surface Water Heat Pumps, GroundWater Heat Pumps and Ground Coupled Heat Pumps) and their possible applications.Chapter 4 gives the reader some general data regarding the various typologies of heatexchangers that are used in these kind of applications.Chapter 5 provides a quick overview of the legislation regarding the refrigerants and anintroduction to some possible refrigerants that could be used during the heat pump cycle(according to the legislation), with some economic data related to heat pumps operatedwith those refrigerants.Chapter 6 is the main chapter constituting the project itself. After a quick presentation of the main assumptions taken in this paper, the building site is analyzed using the planimetry and a system to fulfil the space heating/cooling and domestic hot water is designed (heat pumps and pipes). Afterwards the peak and simultaneous loads for each typology of building are evaluated to choose the shape of the distribution circuits; those in this paper are named circuit A for houses and row-houses and circuit B for all the other buildings. A first simple economical evaluation of the proposed heat pumps is then shown. In this chapter the needed electric heating to fulfil the peak load in each domiciles are also evaluated, after having chosen the dimension of the system, and the losses along the pipe network; in particular, adding the last ones to the chosen size of thesystem, the required size for the heat pump in each circuit was obtained, i.e. 131.56kW for circuit A and 726.30kW for circuit B. With these data , a simple economical evaluation was completed, using known information from the company Johnson Controls ,obtaining, with the chosen sizes and the chosen limits to the economic evaluation, a simple payback period of 8.760 and 8.068 years respectively for circuit A and B. In the end, with data regarding some heat-packs furnished by Johnson Controls , a simulation of the heat pump systems was operated using EES to confirm that what was hypothesized is achievable in the reality and to see how some parameters changes with the decrease of the load. The results of the simulation show that the size of the intermediate heat exchanger between the brine and the groundwater is 36.31m2 for the heat-pack of circuit A and 102.4m2 for each of the two heat-pack of circuit B and that the size of the heat exchangers to produce the domestic hot water and the space heating water, in circuit B during the summer mode at full load, is 2.853m2. The mass flow rates(kg/s) of the brine and of the groundwater for the two circuits during the winter and the summer modes were also found. After this some simulations were run at a partial load only with the purpose to see how the COP varies.Chapter 7 contains the conclusions and some suggestions for future works on the siteand how the quality of the data to build the system could be improved.After the list of the sources used to write this paper, the reader will find the appendix,containing some useful information discussed during the work.
机译:在2015年9月至2016年1月,在挪威科学技术大学能源与过程工程系的Trygve Magne Eikevik教授的监督下,与该项目的项目经理Randi Kalskin Ramstad合作,对本硕士论文中介绍的项目进行了评估。挪威科技大学的地质与矿产资源工程。论文分为七个主要章节:第1章是该项目的概述;第2章使用一些历史数据对地热能的来源进行了快速总结。第3章通过快速概述所有技术(地表水热泵,地下水热泵和地面耦合热泵)及其可能的应用,回顾了有关地热热泵的最新技术现状。第4章为读者提供了一些知识这些中使用的各种热交换器的一般数据第5章快速概述了有关制冷剂的法规,并介绍了一些可能的制冷剂(根据法规)可以在热泵循环中使用(根据法规),并提供了与使用这些制冷剂运行的热泵有关的一些经济数据。第六章是构成项目本身的主要章节。在快速介绍了本文所采用的主要假设之后,使用平面法对建筑工地进行了分析,并设计了一种满足空间供暖/制冷需求的系统,并设计了生活热水(热泵和管道)。然后,评估建筑物每种类型的峰值负荷和同时负荷,以选择配电线路的形状。本文中的房屋和联排房屋分别称为回路A,其他所有建筑物均称为回路B。然后示出了所提出的热泵的第一简单的经济评估。在本章中,在选择了系统的尺寸以及沿管网的损耗之后,还评估了满足每个住所的峰值负荷所需的电加热。特别是,将最后一个添加到系统的选定大小中,即可获得每个回路中热泵所需的大小,即回路A为131.56kW,回路B为726.30kW。利用这些数据,完成了简单的经济评估使用江森自控公司的已知信息,使用选定的尺寸和选定的经济评估限制,可获得电路A和B的简单投资回收期,分别为8.760年和8.068年。最后,获得有关热量的数据由江森自控提供的包装盒,使用EES对热泵系统进行了仿真,以确认在现实中可以实现假设,并观察某些参数如何随着负载的减少而变化。模拟结果表明,回路A的热机组的盐水和地下水之间的中间热交换器的尺寸为36.31m2,回路B的两个热机组的每个热交换器的尺寸为102.4m2。夏季模式下,回路B在满负荷情况下产生生活热水和空间热水的热交换器的面积为2.853平方米。还发现了冬季和夏季模式下两个回路的盐水和地下水的质量流量(kg / s)。此后,仅在部分负载下运行了一些模拟,目的只是为了了解COP的变化。第7章包含结论和一些建议,以供将来在现场进行工作以及如何改善构建系统的数据质量。在用于撰写本文的资源清单中,读者会发现附录,其中包含在工作中讨论的一些有用信息。

著录项

  • 作者

    Stradiotto Gian Maria;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 入库时间 2022-08-20 20:14:37

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号