首页> 外文OA文献 >Design and Operation Principles of DC Circuit Breakers - Development of a Solid State DC Breaker for the NTNU/SINTEF Smart Grid and Renewable Energy Laboratory
【2h】

Design and Operation Principles of DC Circuit Breakers - Development of a Solid State DC Breaker for the NTNU/SINTEF Smart Grid and Renewable Energy Laboratory

机译:直流断路器的设计和操作原理-用于NTNU / SINTEF智能电网和可再生能源实验室的固态直流断路器的开发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Exciting high voltage direct current (HVDC) transmission systems are mainly point-to-point connections. A multi-terminal HVDC grid consisting of three or more inter connected converter stations is suggested in order to increase the reliability, redundancy and flexibility in long distant bulk power transmission. Similar to AC (alternating current) grids, a protection system of HVDC-grids must be able to clear faults without affecting the remaining healthy parts of the grid. Thus, there is a need for HVDC circuit breakers, in which development is challenging: The circuit breaker must interrupt the current typically within 5 ms. The circuit breaker itself must provide the zero current crossing, as no natural zero crossingis exciting in DC grids. The circuit breaker must dissipate the magnetic energy provided by the line inductance The circuit breaker must withstand residual overvoltages after current interruptionThis master thesis describes the development of a solid state dc circuit breaker for the DC grid in the NTNU/SINTEF Smart Grid and Renewable Energy Systems Laboratory. The DC breaker main components are Insulated bipolar gate transistors (IGBT) and metal oxide varistors (MOV). Under normal operation the IGBTs are placed in series with the DCline. The current commutates the current into a parallelMOV if current interruption is demanded. The MOV provides subsequently a counter voltage and forces the current to zero.A test model was assembled initially and corresponding simplified PSCAD simulation modelwas developed in order to gain a deeply understanding of the operation of a DC breaker and facilitate the selection of components and the design of the DC breaker for the SINTEF/NTNU laboratory.The selection of components for the DC breaker was based on the results from the experimental activities. In addition, corresponding ratings were obtained in an adjusted PSCAD model, which included an electro thermal equivalent circuit for temperature calculations. A developed theoretical background including the components used in the DC breaker and general techniques of DC current interruption supported the work. Design guidelines for HVDC breaker based on the experiences from the work were also developed.
机译:令人兴奋的高压直流(HVDC)传输系统主要是点对点连接。为了增加远距离大功率输电的可靠性,冗余性和灵活性,建议使用由三个或更多相互连接的换流站组成的多端子HVDC电网。类似于AC(交流)电网,HVDC电网的保护系统必须能够清除故障,而又不影响电网的其余健康部分。因此,需要具有挑战性的HVDC断路器:断路器通常必须在5 ms内中断电流。断路器本身必须提供零电流交叉,因为在直流电网中不会激发自然零交叉。断路器必须消散由线路电感提供的磁能。断路器必须承受电流中断后的残余过电压。本论文介绍了NTNU / SINTEF智能电网和可再生能源系统中用于直流电网的固态直流断路器的开发。实验室。直流断路器的主要组件是绝缘双极栅晶体管(IGBT)和金属氧化物压敏电阻(MOV)。在正常操作下,IGBT与DCline串联放置。如果需要中断电流,电流会将电流换向并行MOV。 MOV随后提供反电压并将电流强制为零。首先组装了测试模型,并开发了相应的简化PSCAD仿真模型,以便对直流断路器的操作有深入的了解,并有助于组件的选择和设计SINTEF / NTNU实验室的直流断路器。根据实验活动的结果选择直流断路器的组件。另外,在调整后的PSCAD模型中获得了相应的额定值,其中包括用于温度计算的电热等效电路。发达的理论背景包括直流断路器中使用的组件和直流电流中断的一般技术为这项工作提供了支持。还根据工作经验制定了高压直流断路器的设计指南。

著录项

  • 作者

    Norum Eivind Ødegaard;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号