首页> 外文OA文献 >Experimental and Numerical Study of Yielding, Work- Hardening and Anisotropy in Textured AA6xxx Alloys Using Crystal Plasticity Models
【2h】

Experimental and Numerical Study of Yielding, Work- Hardening and Anisotropy in Textured AA6xxx Alloys Using Crystal Plasticity Models

机译:基于晶体塑性模型的织构AA6xxx合金屈服,加工硬化和各向异性的实验和数值研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The present work examines various aspects of the plastic behaviour of the 6000 series of aluminiumudalloys, including yield, work-hardening, diffuse necking, flow stress anisotropy andudplastic flow anisotropy. The alloys were investigated experimentally, using tensile tests, andudtheir behaviour was modelled using the finite element method (FEM). The material in the finiteudelement simulations was described either by anisotropic phenomenological plasticity or crystaludplasticity models. The aim of the work was to study the cases in which crystal plasticity modelsudmay improve the predictions compared to the phenomenological plasticity models or predictudnew aspects of the material’s behaviour. The first part of the thesis is a literature study on crystaludplasticity theory and phenomenological plasticity and a synopsis of the articles, which areudincluded in the second part.udIn Article 1 a method for finding the equivalent stress-strain curve from a uniaxial tensileudtest for a material with anisotropic plastic behaviour after necking is proposed. The forceudand cross-section diameter measurements in such test produce a true stress-strain curve untiludfracture, but this curve includes a triaxial stress field, which develops in the neck. To removeudthe influence of this triaxial field and obtain the equivalent stress-strain curve the reverse engineeringudmethod was utilized. A set of specimens produced from the AA6060 and AA6082udalloys with different heat treatments was tested under uniaxial tension condition. These testsudwere modelled using the FEM, with an anisotropic phenomenological plasticity material model.udThe work-hardening parameters of this model (which define its equivalent stress-strain curve)udwere set as the variables in the optimisation procedure. The anisotropic yield surfaces usedudin the phenomenological model were found using the crystal plasticity model and the crystallographicudtexture data obtained for the examined alloys. It was found that the equivalentudstress-strain curves obtained with this anisotropic plasticity model differ from the curves obtainedudwith an isotropic plasticity model, i.e. this method allows to account for the material’sudplastic anisotropy. The anisotropic yield surfaces obtained with the crystal plasticity model allowed to predict the plastic flow anisotropy reasonably well.udIn Article 2 the precipitation, yield stress and work-hardening model developed by Myhr etudal.1 is combined with a crystal plasticity model with Taylor type homogenisation. The sameudalloys as in Article 1 were used. The precipitation model provides the information about theudsolid solution and precipitate particles formed in the alloy, depending on its thermal history andudchemical composition. This information is then transformed into the parameters of the yieldudand work-hardening model, which predicts the global equivalent stress-strain curve of the alloy.udIn this work an alternative work-hardening rule was proposed, which also uses the informationudabout solid solution and precipitate particle data from the precipitation model. However, unlikeudthe rule proposed by Myhr et al. it is acting on the slip system level. The global equivalentudstress-strain is then calculated using the full constraint Taylor homogenisation model. In thisudcase the influence of crystallographic texture and its evolution on the yield strength and workudhardening is naturally accounted for. The results obtained by the two approaches were comparedudto these experimental data. The comparison showed that while some features of theudalloys’ plastic behaviour were captured somewhat better by the new approach, the overall improvementudwas not large and the results were influenced to a greater extent by the precipitationudmodel than by the crystallographic texture.udIn Article 3 the latent hardening and its influence on the plastic anisotropy of the aluminiumudalloys was studied. Phenomenological and physically based crystal plasticity hardening modelsuduse different descriptions of the latent hardening. The exact values of the latent hardeningudmatrix is a long-standing problem, which has been attempted to be solved both experimentallyudand numerically. These efforts produced quite a few different results. Some typical latentudhardening matrices found in the literature were tested. The experimental study consisted ofuduniaxial tensile tests in different material directions on an AA6060 alloy. These test wereudsimulated using the FEM with crystal plasticity. The results of the simulation were comparedudto the experimental data. In the experiments, the material demonstrated an evolution of theudanisotropy of both flow stress and plastic flow. It was shown that while models with differentudlatent hardening matrices all reproduced the main tendencies of the alloy’s behaviour, thereudwere noticeable differences in the responses.udIn Article 4 an AA6060 alloy sample is studied, in which an extremely sharp cube textureud1Myhr, O. R., Grong, Ø., and Pedersen, K. O. (2010). A combined precipitation, yield strength, and workudhardening model for Al–Mg–Si alloys. Metallurgical and Materials Transactions A, 41(9), 2276–2289. udis observed. The material demonstrated an anomalous rhomboid shape of the fracture surfaceudin the tensile test with a notched cylindrical specimen. The test was modelled using the FEM,udwith material described by the anisotropic phenomenological plasticity model and a crystaludplasticity model. The finite element model represented the specimen geometry and boundaryudconditions realistically, with the average size of the constituent grains in the model close toudthe real one. The combination of the realistic geometry and crystal plasticity model allowedudpredicting the rhomboid shape of the notched specimen’s cross-section at larger strains, whileudthe phenomenological FEM failed to do so.
机译:本工作研究了6000系列铝 udalloy合金的塑性行为的各个方面,包括屈服,加工硬化,弥散颈缩,流应力各向异性和 uplastic塑性各向异性。使用拉伸试验对合金进行了实验研究,其行为使用有限元方法(FEM)进行了建模。有限模拟模拟中的材料通过各向异性现象学可塑性或晶体可塑性模型描述。该工作的目的是研究与晶体学可塑性模型相比,晶体可塑性模型可以改善预测的情况,或者预测材料行为的新方面。本文的第一部分是有关晶体塑性理论和现象学可塑性的文献研究,以及文章的提要,该论文的摘要被包含在第二部分中。 ud在第一篇中,是一种从晶体中找到等效应力-应变曲线的方法。提出了颈缩后具有各向异性塑性行为的材料的单轴拉伸试验。在这样的测试中,力横截面直径的测量产生了一条真正的应力-应变曲线,直到断裂为止,但是该曲线包括一个在颈部发展的三轴应力场。为了消除该三轴磁场的影响并获得等效的应力-应变曲线,采用了反向工程方法。在单轴拉伸条件下测试了一组由AA6060和AA6082 udalloys经过不同热处理的样品。使用有限元法对这些测试进行建模,并使用各向异性的现象可塑性材料模型。 ud在优化过程中,将该模型的加工硬化参数(定义其等效应力-应变曲线)设置为变量。使用晶体可塑性模型和所检查合金的晶体学/变质数据,找到了现象学模型中使用的各向异性屈服面。已经发现,使用该各向异性塑性模型获得的等效拉应力-应变曲线与使用各向同性塑性模型获得的 ud-应变曲线不同,即该方法可以解决材料的 u塑性塑性各向异性。用晶体可塑性模型获得的各向异性屈服面可以很好地预测塑性流动各向异性。 ud在第2条中,将Myhr等人[1]开发的降水,屈服应力和加工硬化模型与晶体可塑性模型相结合。泰勒型均质化。使用与第1条相同的 udalloy。沉淀模型根据其热历史和化学成分提供有关合金中固溶体和沉淀颗粒的信息。然后将这些信息转换为屈服强度和加工硬化模型的参数,以预测合金的整体等效应力-应变曲线。 ud在这项工作中,提出了另一种加工硬化规则,该规则也使用了信息排除沉淀模型中的固溶体和沉淀颗粒数据。但是,与Myhr等人提出的规则不同。它在滑动系统级别上起作用。然后,使用完全约束的泰勒均质化模型来计算整体等效应力应变。在这种情况下,自然要考虑到晶体织构及其演变对屈服强度和加工硬化的影响。将两种方法获得的结果与这些实验数据进行比较。比较表明,虽然新方法较好地捕获了合金的塑性行为的某些特征,但总体改善并不大,并且沉淀/ udmodel的结果比晶体结构对结果的影响更大。 ud在第3条中,研究了潜在硬化及其对铝 udalloys塑性各向异性的影响。现象学和基于物理的晶体可塑性硬化模型滥用潜在硬化的不同描述。潜在硬化 udmatrix的确切值是一个长期存在的问题,已尝试通过实验 ud和数字方法解决。这些努力产生了许多不同的结果。测试了文献中发现的一些典型的潜在未硬化矩阵。实验研究包括对AA6060合金在不同材料方向上的双轴拉伸测试。使用具有晶体可塑性的FEM对这些测试进行了模拟。仿真结果与实验数据进行了比较。在实验中,该材料证明了流应力和塑性流的 u各向异性。结果表明,尽管具有不同非持久硬化矩阵的模型都再现了合金行为的主要趋势。在第4条中,研究了一种AA6060合金样品,其中有非常尖锐的立方体纹理 ud1Myhr,O. R.,Grong,Ø。和Pedersen,K. O.(2010)。 Al-Mg-Si合金的结合析出,屈服强度和加工未硬化模型。冶金与材料学报A,41(9),2276-2289。 udis观察到。该材料在带缺口的圆柱形试样的拉伸试验中显示出断裂表面的异常菱形形状。该测试使用FEM建模,并使用各向异性现象学可塑性模型和晶体可塑性模型描述的材料。有限元模型真实地表示了试样的几何形状和边界条件,模型中构成晶粒的平均尺寸接近真实值。现实的几何形状和晶体可塑性模型的组合允许预测较大应变下带缺口试样的横截面的菱形形状,而现象学有限元分析则不能这样做。

著录项

  • 作者

    Khadyko Mikhail;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号