首页> 外文学位 >Finite element modeling of crack tip plastic anisotropy with application to small fatigue cracks and textured aluminum alloys.
【24h】

Finite element modeling of crack tip plastic anisotropy with application to small fatigue cracks and textured aluminum alloys.

机译:裂纹尖端塑性各向异性的有限元建模及其在小疲劳裂纹和变形铝合金中的应用。

获取原文
获取原文并翻译 | 示例

摘要

For the characterization of crack advance in mechanical components and specimens under monotonic and fatigue loading, many engineering approaches use the assumption that the plastic deformation at the crack tip is isotropic. There are situations when this assumption is not correct, and the modeling efforts require additional correction factors that account for this simplification. The goal of this work is to study two cases where the plastic anisotropy at the crack tip is predominant and influences the magnitude crack-tip parameters, which in turn determine the amount of crack advance under applied loading. At the microstructural level, the small crack issue it is a long-standing problem in the fatigue community. Most of the small crack models consider that the plastic deformation at the crack tip is isotropic. The proposed approached for analyzing small crack growth is to perform finite element simulation of small cracks growing in a material that is assigned single crystal plastic properties. The nature of the plastic deformation of the material at the crack tip in the intra-granular regions could be accurately described and used for modeling small crack growth. By employing finite element analyses for stationary and growing cracks, the main characteristics of the plastic deformation at the crack tip, such as plastic zone sizes and shapes, crack-tip opening displacements, crack-tip opening stresses, are quantified and crack growth rates are determined. Ultimately, by using this crystal plasticity model calibrated for different microstructures, important time and financial resources for real experiments for the study of small cracks can be spared by employing finite element simulations. At macroscale, it is widely known that the manufacturing processes for aluminum alloys results in highly anisotropic microstructures, known as textures. The plastic behavior of these types of materials is far from isotropic and even the use of classical anisotropic yield criteria, such as that on Hill (Hill, 1950), is far from producing accurate results for describing the plastic deformation. Two of these anisotropic yield functions are implemented into finite element code ANSYS and stationary cracks are studied in a wide variety of textures. Significant variations of the plastic deformation at the crack due to the anisotropy are revealed.
机译:为了表征机械零件和试样在单调和疲劳载荷下的裂纹扩展特征,许多工程方法都采用这样的假设:裂纹尖端的塑性变形是各向同性的。在某些情况下,此假设不正确,并且建模工作需要使用其他校正因子来解决此简化问题。这项工作的目的是研究两种情况,其中裂纹尖端处的塑性各向异性占主导,并且会影响裂纹尖端参数的大小,从而确定施加载荷下的裂纹扩展量。在微观结构水平上,小裂纹问题是疲劳社区中长期存在的问题。大多数小裂纹模型认为裂纹尖端的塑性变形是各向同性的。用于分析小裂纹扩展的方法是对分配有单晶塑性特性的材料中的小裂纹进行有限元模拟。可以准确地描述颗粒内区域中裂纹尖端处材料塑性变形的性质,并将其用于模拟小裂纹扩展。通过对固定裂纹和扩展裂纹进行有限元分析,可以确定裂纹尖端塑性变形的主要特征,例如塑性区的大小和形状,裂纹尖端开口位移,裂纹尖端开口应力,并确定裂纹扩展速率。决心。最终,通过使用针对不同微结构校准的晶体可塑性模型,可以通过采用有限元模拟来节省用于实际研究小裂纹的重要时间和金钱。在宏观上,众所周知,铝合金的制造过程会导致高度各向异性的微观结构,即织构。这些类型的材料的塑性行为与各向同性相差甚远,甚至使用经典的各向异性屈服准则(如Hill(Hill,1950))也无法产生准确的结果来描述塑性变形。将这些各向异性屈服函数中的两个实现为有限元代码ANSYS,并研究了各种纹理中的固定裂纹。揭示了由于各向异性导致的裂纹处塑性变形的显着变化。

著录项

  • 作者

    Potirniche, Gabriel Petru.;

  • 作者单位

    Mississippi State University.;

  • 授予单位 Mississippi State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 248 p.
  • 总页数 248
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号