首页> 外文OA文献 >Optimal index rules for single resource allocation to stochastic dynamic competitors
【2h】

Optimal index rules for single resource allocation to stochastic dynamic competitors

机译:为随机动态竞争者分配单个资源的最佳索引规则

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we present a generic Markov decision process model of optimal single resource allocation to a collection of stochastic dynamic competitors. The main goal is to identify sufficient conditions under which this problem is optimally solved by an index rule. The main focus is on the frozen-if-not-allocated assumption, which is notoriously found in problems including the multi-armed bandit problem, tax problem, Klimov network, job sequencing, object search and detection. The problem is approached by a Lagrangian relaxation and decomposed into a collection of normalized parametric single-competitor subproblems, which are then optimally solved by the well-known Gittins index. We show that the problem is equivalent to solving a time sequence of its Lagrangian relaxations. We further show that our approach gives insights on sufficient conditions for optimality of index rules in restless problems (in which the frozen-if-not-allocated assumption is dropped) with single resource; this paper is the first to prove such conditions.
机译:在本文中,我们为随机动态竞争者的集合提供了最佳单一资源分配的通用马尔可夫决策过程模型。主要目标是确定索引条件可以最佳解决该问题的充分条件。主要关注的是冻结如果未分配的假设,该假设臭名昭著地存在于以下问题中:多武装匪徒问题,税收问题,Klimov网络,工作排序,对象搜索和检测。通过拉格朗日松弛来解决该问题,并将其分解为归一化参数化单竞争者子问题的集合,然后通过众所周知的Gittins索引对其进行最佳解决。我们表明问题等同于解决其拉格朗日弛豫的时间序列。我们进一步证明,我们的方法可以为单一资源在烦躁不安的问题(删除未分配的冻结假设)中的索引规则优化的充分条件提供洞察力。本文是第一个证明这种条件的方法。

著录项

  • 作者

    Jacko Peter;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号