首页> 外文OA文献 >Advances in classification of EEG signals via evolving fuzzy classifiers and dependant multiple HMMs.
【2h】

Advances in classification of EEG signals via evolving fuzzy classifiers and dependant multiple HMMs.

机译:通过发展的模糊分类器和相关的多个HMM在脑电信号分类方面的进展。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two novel approaches to the problem of brain signals (electroencephalogram (EEG)) classification are introduced in the paper. The first method is based on a modular probabilistic network architecture that employs multiple dependant hidden Markov models (DM-HMM-D) on the input features (channels). The second method, eClass, is based on an on-line evolvable fuzzy rule base of EEG signal prototypes that represent each class and take into consideration the spatial proximity between input signals. Both approaches use supervised learning but differ in their mode of operation. eClass is designed recursively, on-line, and has an evolvable structure, while DM-HMM-D is trained off-line, in a block-based mode, and has a fixed architecture. Both methods have been extensively tested on real EEG data that is recorded during several experimental sessions involving a single female subject who is exposed to mild pain induced by a laser beam. Experimental results illustrate the viability of the proposed approaches and their potential in solving similar classification problems. (c) Elsevier
机译:本文介绍了两种解决脑信号(脑电图(EEG))问题的新方法。第一种方法基于模块化概率网络体系结构,该体系结构对输入特征(通道)采用多个相关的隐式马尔可夫模型(DM-HMM-D)。第二种方法eClass基于EEG信号原型的在线可演化模糊规则库,该模型代表每个类并考虑了输入信号之间的空间接近性。两种方法都使用监督学习,但是操作方式不同。 eClass是递归在线设计的,具有可演化的结构,而DM-HMM-D是在基于块的模式下脱机训练的,并且具有固定的体系结构。两种方法均已在真实的EEG数据上进行了广泛的测试,该数据在几个实验过程中记录,涉及单个女性受试者,该受试者暴露于激光束引起的轻度疼痛。实验结果说明了所提出方法的可行性及其在解决类似分类问题中的潜力。 (c)爱思唯尔

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号