首页> 外文OA文献 >An evolving approach to unsupervised and Real-Time fault detection in industrial processes
【2h】

An evolving approach to unsupervised and Real-Time fault detection in industrial processes

机译:在工业过程中不断发展的无监督实时故障检测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fault detection in industrial processes is a field of application that has gaining considerable attention in the past few years, resulting in a large variety of techniques and methodologies designed to solve that problem. However, many of the approaches presented in literature require relevant amounts of prior knowledge about the process, such as mathematical models, data distribution and pre-defined parameters. In this paper, we propose the application of TEDA - Typicality and Eccentricity Data Analytics - , a fully autonomous algorithm, to the problem of fault detection in industrial processes. In order to perform fault detection, TEDA analyzes the density of each read data sample, which is calculated based on the distance between that sample and all the others read so far. TEDA is an online algorithm that learns autonomously and does not require any previous knowledge about the process nor any user-defined param-eters. Moreover, it requires minimum computational effort, enabling its use for real-time applications. The efficiency of the proposed approach is demonstrated with two different real world industrial plant data streams that provide “normal” and “faulty” data. The results shown in this paper are very encouraging when compared with traditional fault detection approaches.
机译:在过去的几年中,工业过程中的故障检测是一个受到广泛关注的应用领域,从而产生了旨在解决该问题的各种各样的技术和方法。但是,文献中介绍的许多方法都需要有关该过程的相关先验知识,例如数学模型,数据分布和预定义参数。在本文中,我们提出将TEDA(典型性和偏心率数据分析)(一种完全自主的算法)应用于工业过程中的故障检测问题。为了执行故障检测,TEDA分析了每个读取数据样本的密度,该密度是根据该样本与到目前为止所有其他读取数据之间的距离计算得出的。 TEDA是一种在线算法,可以自主学习,不需要任何有关该过程的先前知识,也不需要任何用户定义的参数。此外,它需要最少的计算工作量,使其可以用于实时应用程序。通过提供“正常”和“故障”数据的两个不同的现实世界工厂数据流,证明了该方法的效率。与传统的故障检测方法相比,本文显示的结果令人鼓舞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号