首页> 外文OA文献 >Zero-direct-carbon-emission aluminum production by solid oxide membrane-based electrolysis process
【2h】

Zero-direct-carbon-emission aluminum production by solid oxide membrane-based electrolysis process

机译:固体氧化物膜电解法生产零直接碳排放铝

摘要

The traditional aluminum production process (Hall-Héroult process) involves electrolyzing the alumina dissolved in the molten cryolite salt. This process is energy intensive and emits massive amounts of CO2 and other greenhouse gases. The market demand of aluminum and the environmental impact of the current aluminum production process justify research and development of alternative electrolytic processes for aluminum production that can both reduce the cost and eliminate adverse environment impacts.Solid oxide membrane (SOM) based electrolysis process is an innovative technology that has been demonstrated to successfully produce many energy-intensive metals directly from their oxides in an efficient, economical and environmentally sound way. During the SOM electrolysis process, an oxygen-ion-conducting SOM tube made of ytteria-stabilized zirconia (YSZ) separates the pre-selected molten flux with dissolved metal oxide from the inert anode assembly inside the YSZ tube. When the applied DC potential between the cathode and the anode exceeds the dissociation potential of desired metal oxide, the metal is reduced at the cathode while oxygen ions migrate through the YSZ membrane and are oxidized at the anode. Employing the inert anode allows the oxygen to be collected at the anode as a value added byproduct.In this work, a zero-direct-carbon-emission aluminum production process utilizing SOM electrolysis is presented. The molten flux used in the electrolysis process is optimized through careful measurements of its physio-chemical properties. The liquidus temperature, volatilization rate, alumina solubility, aluminum solubility, YSZ membrane degradation rate and electrical conductivity of various flux compositions were measured, and the flux chosen for SOM electrolysis was a eutectic MgF2-CaF2 system containing optimized amounts of YF3, CaO and Al2O3. Laboratory scale SOM electrolysis employing the inert anode were performed at 1100 ~ 1200oC to demonstrate the feasibility of producing and collecting aluminum while producing pure oxygen as a byproduct. The aluminum product was characterized by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). An equivalent circuit model for the electrolysis process was developed in order to identify the polarization losses in the SOM electrolysis cell.
机译:传统的铝生产工艺(Hall-Héroult工艺)涉及电解溶解在熔融冰晶石盐中的氧化铝。该过程耗能,并排放大量的二氧化碳和其他温室气体。铝的市场需求和当前铝生产工艺对环境的影响证明了研发铝生产替代电解工艺的合理性,既可以降低成本又可以消除不利的环境影响。基于固态氧化膜(SOM)的电解工艺是一种创新事实证明,这项技术可以有效,直接,经济,环保地从氧化物中直接成功地生产出许多高耗能金属。在SOM电解过程中,由稳定氧化锆(YSZ)制成的传导氧离子的SOM管将预选的熔融助熔剂与溶解的金属氧化物从YSZ管内的惰性阳极组件中分离出来。当在阴极和阳极之间施加的直流电势超过所需金属氧化物的解离电势时,金属在阴极被还原,同时氧离子迁移通过YSZ膜并在阳极被氧化。采用惰性阳极可使氧作为附加值副产品收集在阳极。在这项工作中,提出了一种利用SOM电解的零直接碳排放铝生产工艺。通过仔细测量其物理化学性质,可以优化电解过程中使用的熔融助焊剂。测量了各种助熔剂成分的液相线温度,挥发速率,氧化铝溶解度,铝溶解度,YSZ膜降解速率和电导率,选择用于SOM电解的助熔剂是共晶MgF2-CaF2系统,其中包含优化量的YF3,CaO和Al2O3 。使用惰性阳极的实验室规模的SOM电解在1100〜1200oC进行,以证明生产和收集铝同时生产副产物纯氧的可行性。铝产品通过扫描电子显微镜(SEM)和能量色散X射线光谱(EDS)进行表征。为确定SOM电解池中的极化损耗,开发了用于电解过程的等效电路模型。

著录项

  • 作者

    Su Shizhao;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_us
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号