首页> 美国卫生研究院文献>Advanced Science >3D Self‐Architectured Steam Electrode Enabled Efficient and Durable Hydrogen Production in a Proton‐Conducting Solid Oxide Electrolysis Cell at Temperatures Lower Than 600 °C
【2h】

3D Self‐Architectured Steam Electrode Enabled Efficient and Durable Hydrogen Production in a Proton‐Conducting Solid Oxide Electrolysis Cell at Temperatures Lower Than 600 °C

机译:3D自构蒸汽电极可在质子传导性固体氧化物电解槽中在低于600°C的温度下高效且持久地产生氢气

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hydrogen production via water electrolysis using solid oxide electrolysis cells (SOECs) has attracted considerable attention because of its favorable thermodynamics and kinetics. It is considered as the most efficient and low‐cost option for hydrogen production from renewable energies. By using proton‐conducting electrolyte (H‐SOECs), the operating temperature can be reduced from beyond 800 to 600 °C or even lower due to its higher conductivity and lower activation energy. Technical barriers associated with the conventional oxygen‐ion conducting SOECs (O‐SOECs), that is, hydrogen separation and electrode instability that is primarily due to the Ni oxidation at high steam concentration and delamination associated with oxygen evolution, can be remarkably mitigated. Here, a self‐architectured ultraporous (SAUP) 3D steam electrode is developed for efficient H‐SOECs below 600 °C. At 600 °C, the electrolysis current density reaches 2.02 A cm−2 at 1.6 V. Instead of fast degradation in most O‐SOECs, performance enhancement is observed during electrolysis at an applied voltage of 1.6 V at 500 °C for over 75 h, attributed to the “bridging” effect originating from reorganization of the steam electrode. The H‐SOEC with SAUP steam electrode demonstrates excellent performance, promising a new prospective for next‐generation steam electrolysis at reduced temperatures.
机译:使用固体氧化物电解池(SOEC)通过水电解制氢,由于其良好的热力学和动力学特性,已经引起了广泛的关注。它被认为是可再生能源制氢的最有效,成本最低的选择。通过使用质子传导电解质(H-SOEC),由于其较高的电导率和较低的活化能,其工作温度可以从800℃以上降至600℃甚至更低。与传统的氧离子传导SOEC(O-SOEC)相关的技术障碍,即氢分离和电极不稳定性(主要归因于高蒸汽浓度下的Ni氧化以及与氧气释放相关的分层)可以消除。在这里,针对低于600°C的高效H-SOEC,开发了一种自构超孔(SAUP)3D蒸汽电极。在600°C下,1.6 V时电解电流密度达到2.02 A cm −2 。在大多数O-SOEC中,在施加电压为1.6 V的条件下进行电解时,观察到性能增强,而不是快速降解500°C持续75小时以上,这归因于蒸汽电极的重组产生的“桥接”效应。带有SAUP蒸汽电极的H-SOEC表现出出色的性能,有望为降低温度下的下一代蒸汽电解技术提供新的前景。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号