首页> 外文OA文献 >度量空间的嵌入问题
【2h】

度量空间的嵌入问题

机译:度量空间的嵌入问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

经典Banach空间(或者,更一般地,度量空间)的嵌入理论,一直是泛函分析研究的一个基本而重要的问题.它在内容上包括空间分类,空间插值理论,空间构造,"万有"空间问题等等,其自身也构成一个较大的理论体系.近年来,涉及粗几何、非交换几何、群论、K-理论、C*-代数等多个现代数学领域的粗Baum-Cone猜测和粗Novikov猜测这些深受关注的课题,由于郁国梁和Karsparov等出色工作打通了泛函分析与上述领域的重大障碍,这使得"嵌入"问题研究再次成为人们关注的新课题.本文对于弱紧集、超弱紧集的一致嵌入理论的研究进展作一简述.
机译:经典Banach空间(或者,更一般地,度量空间)的嵌入理论,一直是泛函分析研究的一个基本而重要的问题.它在内容上包括空间分类,空间插值理论,空间构造,"万有"空间问题等等,其自身也构成一个较大的理论体系.近年来,涉及粗几何、非交换几何、群论、K-理论、C*-代数等多个现代数学领域的粗Baum-Cone猜测和粗Novikov猜测这些深受关注的课题,由于郁国梁和Karsparov等出色工作打通了泛函分析与上述领域的重大障碍,这使得"嵌入"问题研究再次成为人们关注的新课题.本文对于弱紧集、超弱紧集的一致嵌入理论的研究进展作一简述.

著录项

  • 作者

    程立新; 程庆进;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 zh
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号