首页> 美国政府科技报告 >Poisson Structures on Nonlinear Evolution Equations
【24h】

Poisson Structures on Nonlinear Evolution Equations

机译:非线性发展方程的poisson结构

获取原文

摘要

Let epsilon be a differential equation and F = F(epsilon) be the function algebraon the infinite prolongation epsilon(infinity). Consider the algebra A = lambda(star)(F) of differential forms on F endowed with the horizontal differential dh : A -> A. A Poisson structure P on epsilon is understood as the homotopy equivalence class (with respect to dh) of a skew super bidifferential operator P in A satisfying (P,P)s = 0,(0,0)s being the super Schouten bracket. Description of Poisson structures for evolution equation with arbitrary number of space variables is given. It is shown that computations, in essence, reduce to solving the operator equation P ol(epsilon) + l(epsilon)oP = 0. The authors demonstrate that known structures for some evolution equations (e.g. the KdV equation) are particular cases of those considered here.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号