首页> 美国政府科技报告 >Soft Computing Methods for Control and Instrumentation
【24h】

Soft Computing Methods for Control and Instrumentation

机译:控制和仪表的软计算方法

获取原文

摘要

In this work, the existing soft computing techniques have been enhanced, and211u001eapplied to control and instrumentation areas. First, new soft computing methods 211u001eare proposed. A Modified Elman Neural Network (MENN) is introduced to provide 211u001efast convergence speed. Based on Muller's method, the authors propose a new 211u001ereinforcement learning method, which can converge faster than the original 211u001ealgorithm. Second, the authors study the MENN-based identification and control 211u001eproblems. A dynamical system identification scheme as well as a trajectory 211u001etracking configuration using the MENNs are discussed, respectively. Third, the 211u001eapplications of soft computing methods in velocity and acceleration acquisition 211u001ein motion control systems are discussed. The authors construct a neural network-211u001ebased acceleration acquisition scheme to obtain clean and delayless acceleration 211u001esignals.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号