首页> 美国政府科技报告 >Renormalization in Quantum Field Theory and the Riemann-Hilbert Problem I. The211 Hopf Algebra Structure of Graphs and the Main Theorem
【24h】

Renormalization in Quantum Field Theory and the Riemann-Hilbert Problem I. The211 Hopf Algebra Structure of Graphs and the Main Theorem

机译:量子场论中的重整化与Riemann-Hilbert问题I.图的211 Hopf代数结构及主要定理

获取原文

摘要

This paper gives a complete self-contained proof of the authors result announced211u001ein showing that renormalization in quantum field theory is a special instance of 211u001ea general mathematical procedure of extraction of finite values based on the 211u001eRiemann-Hilbert problem. the authors shall first show that for any quantum field 211u001etheory, the combinatorics of Feynman graphs gives rise to a Hopf algebra H which 211u001eis a cummutative as an algebra. It is the dual Hopf algebra of the enveloping 211u001ealgebra of Lie algera G whose basis is labelled by the one particle irreducible 211u001eFeynman graphs. The Lie bracket of two such graphs is computed from insertions of 211u001eone graphs in the other and vice versa. The corresponding Lie group G is the 211u001egroup of characters of H.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号