首页> 美国政府科技报告 >Rigorous Stability Results for a Laplacian Moving Boundary Problem with Kinetic Undercooling; Analysis rept
【24h】

Rigorous Stability Results for a Laplacian Moving Boundary Problem with Kinetic Undercooling; Analysis rept

机译:具有动力学过冷度的拉普拉斯运动边界问题的严格稳定性结果;分析rept

获取原文

摘要

We study the shape stability of disks moving in an external Laplacian field in two dimensions. The problem is motivated by the motion of ionization fronts in streamer-type electric breakdown. It is mathematically equivalent to the motion of a small bubble in a Hele-Shaw cell with a regularization of kinetic undercooling type, namely a mixed Dirichlet-Neumann boundary condition for the Laplacian field on the moving boundary. Using conformal mapping techniques, linear stability analysis of the uniformly translating disk is recast into a single PDE which is exactly solvable for certain values of the regularization parameter. We concentrate on the physically most interesting exactly solvable and non-trivial case. We show that the circular solutions are linearly stable against smooth initial perturbations. In the transformation of the PDE to its normal hyperbolic form, a semigroup of automorphisms of the unit disk plays a central role. It mediates the convection of perturbations to the back of the circle where they decay. Exponential convergence to the unperturbed circle occurs along a unique slow manifold as time, t (factorial) 1. Smooth temporal eigenfunctions cannot be constructed, but excluding the far back part of the circle, a discrete set of eigenfunctions does span the function space of perturbations. We believe that the observed behaviour of a convectively stabilized circle for a certain value of the regularization parameter is generic for other shapes and parameter values. Our analytical results are illustrated by figures of some typical solutions.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号