首页> 美国政府科技报告 >Accident Prevention Based on Automatic Detection of Accident Prone Traffic Conditions: Phase 1; Final rept
【24h】

Accident Prevention Based on Automatic Detection of Accident Prone Traffic Conditions: Phase 1; Final rept

机译:基于事故易发交通状况自动检测的事故预防:第1阶段;最终评估

获取原文

摘要

Growing concern over traffic safety as well as rising congestion costs have been recently redirecting research effort from the traditional crash detection and clearance reactive traffic management towards online, proactive crash prevention solutions. In this project such a solution, specifically for high crash areas, is explored by identifying the most relevant real time traffic metrics and incorporating them in a crash likelihood estimation model. Unlike earlier attempts, this one is based on a unique detection and surveillance infrastructure deployed on the freeway section experiencing the highest crash rate in the state of Minnesota. This state-of-the-art infrastructure allowed video recording of 110 live crashes, crash related traffic events, as well as contributing factors while simultaneously measuring traffic variables such as individual vehicle speeds and headways over each lane in several places inside the study area. This crash rich database was combined with visual observations and analyzed extensively to identify the most relevant real-time traffic measurements for detecting crash prone conditions and develop an online crash prone conditions model. This model successfully established a relationship between fast evolving real time traffic conditions and the likelihood of a crash. Testing was performed in real time during 10 days not previously used in the model development, under varying weather and traffic conditions.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号