首页> 美国政府科技报告 >Radiation Transport Measurements in Methanol Pool Fires with Fourier Transform Infrared Spectroscopy
【24h】

Radiation Transport Measurements in Methanol Pool Fires with Fourier Transform Infrared Spectroscopy

机译:傅立叶变换红外光谱法测定甲醇池火灾中的辐射传输

获取原文

摘要

Pool fires rely on heat feedback from the combustion process to the liquid surface to vaporize the fuel. This coupled relationship determines the fuel burning rate and thus the fire structure and size. Radiative heat transfer is the dominant heat feedback in large pool fires. Species concentrations and temperatures have large influence on the radiative heat transfer in the fuel rich-core between the flame and the pool surface. To study radiative transport in the fuel-rich core, an experimental method was developed to measure spectral absorption through various pathlengths inside a 30 cm diameter methanol pool fire by using a Fourier Transform Infrared Spectrometer with N2 purged optical probes. The measured spectra are used to estimate species concentration profiles of methanol, CO, and CO2 in the fuel rich core by fitting predictions of a spectrally resolved radiation transport model to the measured spectra.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号