首页> 美国政府科技报告 >Automatic Detection of RWIS Sensor Malfunctions (Phase II)
【24h】

Automatic Detection of RWIS Sensor Malfunctions (Phase II)

机译:自动检测RWIs传感器故障(第二阶段)

获取原文

摘要

The overall goal of this project (Phases I & II) was to develop computerized procedures that detect Road Weather Information System (RWIS) sensor malfunctions. In the first phase of the research we applied three classification algorithms and six regression algorithms to data generated by RWIS sensors in order to predict malfunctions. In this phase we investigate the use of Hidden Markov models as predictors of sensor values. The Hidden Markov model (HMM) is a technique used to model a sequence of temporal events. For example, suppose we have the sequence of values produced by a given sensor over a fixed time period. An HMM can be used to produce this sequence and then to determine the probability of occurrence of another sequence of values, such as that produced by the given sensor for a subsequent time period. If the actual values produced by the sensor deviate from the predicted sequence then a malfunction may have occurred. This report provides an overview of the Hidden Markov model and three algorithms, namely, the Forward-Backward algorithms, the Baum-Welch algorithm, and the Viterbi algorithm, that were used in our development of Hidden Markov models to predict sensor values. We performed a series of experiments to evaluate the use of HMMs as predictors of temperature and precipitation sensor values.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号