首页> 美国政府科技报告 >Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Model-Parameter and Predictive Uncertainty Analysis
【24h】

Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Model-Parameter and Predictive Uncertainty Analysis

机译:高参数化反演的方法:使用pEsT进行模型参数和预测不确定性分析的指南

获取原文

摘要

Analysis of the uncertainty associated with parameters used by a numerical model, and with predictions that depend on those parameters, is fundamental to the use of modeling in support of decisionmaking. Unfortunately, predictive uncertainty analysis with regard to models can be very computationally demanding, due in part to complex constraints on parameters that arise from expert knowledge of system properties on the one hand (knowledge constraints) and from the necessity for the model parameters to assume values that allow the model to reproduce historical system behavior on the other hand (calibration constraints).

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号