首页> 美国政府科技报告 >Complex Sample Survey Estimation in Static State-Space
【24h】

Complex Sample Survey Estimation in Static State-Space

机译:静态空间中的复样本调查估计

获取原文

摘要

Increased use of remotely sensed data is a key strategy adopted by the Forest Inventory and Analysis Program. However, multiple sensor technologies require complex sampling units and sampling designs. The Recursive Restriction Estimator (RRE) accommodates this complexity. It is a design-consistent Empirical Best Linear Unbiased Prediction for the state-vector, which contains all suffi cient statistics for the sampled population. RRE reduces a complex estimator into a sequence of simpler estimators. Also included are model-based pseudo-estimators and multivariate Taylor series approximations for covariance matrices. Together, these provide a unifi ed approach to detailed estimation in large, complex sample surveys.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号