首页> 美国政府科技报告 >ON CALCULATING SOLUTIONS OF QUASI-LINEAR, FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS
【24h】

ON CALCULATING SOLUTIONS OF QUASI-LINEAR, FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

机译:关于拟线性一阶偏微分方程的计算解

获取原文

摘要

A common means to calculate solutions of non—linear hyperbolic partial differential equations, when shocks are present, is to introduce into an otherwise straightforward difference scheme special terms which might represent the action of a fictitious tempering mechanism, perhaps of some dissipative type. Experience seems to justify the use of such "tempered" schemes, but proofs of convergence are largely incomplete or lacking. In this paper, in the case of a simple type of equation, we shall give convergence proofs for a class of explicit tempering schemes including versions of the von Neumann-Richtmyer [7] and the Lax-Wendroff methods. These results supplement those of a previous paper devoted to tempering schemes of implicit type (and to an explicit scheme with linear viscosity).

著录项

  • 作者

  • 作者单位
  • 年度 1960
  • 页码 1-36
  • 总页数 36
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工业技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号