首页> 美国政府科技报告 >Seismic Design and Performance of Bridges with Columns on Rocking Foundations.
【24h】

Seismic Design and Performance of Bridges with Columns on Rocking Foundations.

机译:晃动基础梁柱抗震设计与性能。

获取原文

摘要

Traditional seismic design of bridges includes ductile details that allow bridges to develop substantial inelastic deformations when subjected to severe earthquakes. While bridges designed in this manner may be safe from collapse following an earthquake, they are susceptible to considerable damage and permanent lateral displacements that can impair traffic flow and necessitate costly and time-consuming inspections and repairs (perhaps even demolition). Nowadays, as an alternative design strategy, bridges with columns supported on rocking foundations are designed to undergo large deformations but sustain far less damage and can recenter after large earthquakes. The numerical study presented herein investigates the seismic response of two bridges subjected to two sets of forty ground motions each, one consisting of pulse-type near-fault ground motions and another containing a mix of near- and far-fault ground motions. Three design strategies were considered for each of the two bridges. The first design is based on current common practice, which expects flexural plastic hinging in the columns. The other two designs use rocking shallow and pile foundations, respectively. The columns in the bridge with the rocking foundation are designed to remain elastic while also accounting for the effect of framing between the columns, the deck, and the abutments. The bridges with rocking foundations consider several different cases in terms of size of columns, bearings, and expansion joints at the abutments. Each bridge model is subjected to the two sets of ground motions using two horizontal components for each ground motion. The numerical results show that lateral drift similar to that experienced by fixed-base bridges is possible in the bridges with rocking pile foundations, with essentially an elastic response in the columns. A comparison of the seismic performance of the bridges in terms of post-earthquake repair cost is conducted using an existing performance evaluation framework based on the Pacific Earthquake Engineering Research Centers performance-based earthquake engineering method. Existing damage models for the columns, bearings, and shear keys are used, while a new damage model of rocking shallow foundations is developed. The structural components are classified in different performance groups, with discrete damage states and repair methods.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号