首页> 美国政府科技报告 >Efficient Approximate Factorization Implicit Scheme for the Equations of Gasdynamics
【24h】

Efficient Approximate Factorization Implicit Scheme for the Equations of Gasdynamics

机译:气动力学方程的有效近似因子分解隐式格式

获取原文

摘要

An efficient implicit finite-difference algorithm for the gas dynamic equations utilizing matrix reduction techniques is presented. A significant reduction in arithmetic operations is achieved while maintaining the same favorable stability characteristics and generality found in the Beam and Warming approximate factorization algorithm. Steady-state solutions to the conservative Euler equations in generalized coordinates are obtained for transonic flows about a NACA 0012 airfoil. The theoretical extension of the matrix reduction technique to the full Navier-Stokes equations in Cartesian coordinates is presented in detail. Linear stability, using a Fourier stability analysis, is demonstrated and discussed for the one-dimensional Euler equations. It is shown that the method offers advantages over the conventional Beam and Warming scheme and can retrofit existing Beam and Warming codes with minimal effort.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号