首页> 美国政府科技报告 >Studies on spectral analysis of randomly sampled signals: Application to laser velocimetry data
【24h】

Studies on spectral analysis of randomly sampled signals: Application to laser velocimetry data

机译:随机采样信号的光谱分析研究:激光测速数据的应用

获取原文

摘要

Spectral analysis is very useful in determining the frequency characteristics of many turbulent flows, for example, vortex flows, tail buffeting, and other pulsating flows. It is also used for obtaining turbulence spectra from which the time and length scales associated with the turbulence structure can be estimated. These estimates, in turn, can be helpful for validation of theoretical/numerical flow turbulence models. Laser velocimetry (LV) is being extensively used in the experimental investigation of different types of flows, because of its inherent advantages; nonintrusive probing, high frequency response, no calibration requirements, etc. Typically, the output of an individual realization laser velocimeter is a set of randomly sampled velocity data. Spectral analysis of such data requires special techniques to obtain reliable estimates of correlation and power spectral density functions that describe the flow characteristics. FORTRAN codes for obtaining the autocorrelation and power spectral density estimates using the correlation-based slotting technique were developed. Extensive studies have been conducted on simulated first-order spectrum and sine signals to improve the spectral estimates. A first-order spectrum was chosen because it represents the characteristics of a typical one-dimensional turbulence spectrum. Digital prefiltering techniques, to improve the spectral estimates from randomly sampled data were applied. Studies show that the spectral estimates can be increased up to about five times the mean sampling rate.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号