首页> 美国政府科技报告 >Negative Differential Resistance (NDR) frequency conversion with gain
【24h】

Negative Differential Resistance (NDR) frequency conversion with gain

机译:具有增益的负差分电阻(NDR)频率转换

获取原文

摘要

The dependence of the I-V characteristic of the negative differential resistance (NDR) devices on the power level and frequency of the rf input signal has been theoretically analyzed with a modified large- and small-signal nonlinear circuit analysis program. The NDR devices we used in this work include both the tunnel diode (without the antisymmetry in the I-V characteristic) and resonant-tunneling devices (with the antisymmetry in the I-V characteristic). Absolute negative conductance can be found from a zero-biased resonant tunneling device when the applied pump power is within a small range. This study verifies the work of Sollner et al. Variable negative conductances at the fundamental and harmonic frequencies can also be obtained from both the unbiased and biased tunnel diodes. The magnitude of the negative conductances can be adjusted by varying the pump amplitude -- a very useful circuit property. However, the voltage range over which the negative conductance occurs moves towards the more positive side of the voltage axis with increasing frequency. Furthermore, the range of the pumping amplitude to obtain negative conductance varies with the parasitics (resistance and capacitance) of the device. The theoretical observation of the dependence of the I-V characteristic of the NDR devices on the power and frequency of the applied pump signal is supported by the experimental results. In addition, novel functions of a NDR device such as self-oscillating frequency multiplier and mixer with gain have been experimentally demonstrated. The unbiased oscillator have also been successfully realized with a NDR device with an antisymmetrical I-V characteristic. Finally, the applications of these device functions will be discussed.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号