首页> 美国政府科技报告 >Model reduction for the dynamics and control of large structural systems via neutral network processing direct numerical optimization
【24h】

Model reduction for the dynamics and control of large structural systems via neutral network processing direct numerical optimization

机译:通过中性网络处理直接数值优化模型减少大型结构系统的动力学和控制

获取原文

摘要

Three neural network processing approaches in a direct numerical optimization model reduction scheme are proposed and investigated. Large structural systems, such as large space structures, offer new challenges to both structural dynamicists and control engineers. One such challenge is that of dimensionality. Indeed these distributed parameter systems can be modeled either by infinite dimensional mathematical models (typically partial differential equations) or by high dimensional discrete models (typically finite element models) often exhibiting thousands of vibrational modes usually closely spaced and with little, if any, damping. Clearly, some form of model reduction is in order, especially for the control engineer who can actively control but a few of the modes using system identification based on a limited number of sensors. Inasmuch as the amount of 'control spillover' (in which the control inputs excite the neglected dynamics) and/or 'observation spillover' (where neglected dynamics affect system identification) is to a large extent determined by the choice of particular reduced model (RM), the way in which this model reduction is carried out is often critical.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号