首页> 美国政府科技报告 >A numerical study of mixing and combustion in hypervelocity flows through a scramjet combustor model
【24h】

A numerical study of mixing and combustion in hypervelocity flows through a scramjet combustor model

机译:通过超燃冲压发动机燃烧室模型进行超高速混合和燃烧的数值研究

获取原文

摘要

Interest in high speed, air-breathing propulsion systems such as scramjets has revived in recent years fueled to a large extent by the National Aerospace Plane (NASP) program. These vehicles are expected to fly trans-atmospheric and as a consequence, the Mach number level within the engine/combustor would be rather high (M greater than 5). Ground based testing of such scramjet engines requires a facility that can not only achieve the right Mach number, but also have the proper pressures and temperatures to simulate the combustion processes. At present, only pulse type facilities can provide such high enthalpy flows. The newest of these is the free-piston shock tunnel, T5 located at GALCIT. Recently, a generic combustor model was tested in T5, and the experimental data from that study is analyzed in the present report. The available experimental data from T5 are essentially the static pressures on the injection wall and the one opposite to it. Thus, a principal aim of the present study was to validate the available experimental data by using a proven CFD tool and then investigate the performance characteristics of the combustor model, such as, the mixing efficiency and combustion efficiency. For this purpose, in this study, the code GASP has been used.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号