首页> 美国政府科技报告 >Fluvial erosion on Mars: Implications for paleoclimatic change
【24h】

Fluvial erosion on Mars: Implications for paleoclimatic change

机译:火星上的河流侵蚀:对古气候变化的影响

获取原文

摘要

Fluvial erosion on Mars has been nonuniform in both time and space. Viking orbiter images reveal a variety of different aged terrains exhibiting widely different degrees of erosion. Based on our terrestrial analog studies, rates of fluvial erosion associated with the formation of many of the valleys on Mars is probably on the order of hundreds of meters per million years, while rates of erosion associated with the formation of the outflow channels probably ranged from tens to hundreds of meters in several weeks to months. However, estimated rates of erosion of the Martian surface at the Viking Lander sites are extremely low, on the order of 1 micron/yr or less. At most this would result in a meter of material removed per million years, and it is unlikely that such an erosion rate would be able to produce the degree of geomorphic work required to form the fluvial features present elsewhere on the surface. In addition, single terrain units are not eroded uniformly by fluvial processes. Instead fluvial valleys, particularly in the cratered highlands, typically are situated in clusters surrounded by vast expanses of uneroded surfaces of the same apparent lithologic, structural, and hydrological setting. Clearly throughout its geologic history, Mars has experienced a nonuniformity in erosion rates. By estimating the amount of fluvial erosion on dissected terrains and by studying the spatial distribution of those locations which have experienced above normal erosion rates, it should be possible to place further constraints on Mars' paleoclimatic history.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号