首页> 美国政府科技报告 >Studies of Radiation-Driven and Buoyancy-Driven Fluid Flows and Transport
【24h】

Studies of Radiation-Driven and Buoyancy-Driven Fluid Flows and Transport

机译:辐射驱动和浮力驱动的流体流动与输运研究

获取原文

摘要

It is well known that radiative heat transport influences many types of buoyant flows due to its effect on the temperature and thus density field in the fluid medium. It is of interest to study gaseous flows driven solely by radiation in the absence of buoyancy, particularly because of its application to astrophysical flows that are well known from astronomical observations and numerical simulation. However, no laboratory-scale experiments of this phenomenon have ever been conducted. To study the possibility of obtaining such flows in the laboratory, an apparatus was built to produce large temperature differences (Delta T) up to 300 K in a gas confined between flat parallel plates. SF6 was used as the radiatively-active gas because its Planck absorption length is much shorter than that of any other common non-reactive gas. The NASA-Lewis 2.2 second drop tower was used to obtain reduced gravity in order to suppress buoyancy effects. To image the resulting flows, a laser shearing interferometer was employed. Initial results indicate the presence of flow that does not appear to be attributable to the residual flow resulting from buoyancy influences before the drop. For Delta T greater than 70 K, slight deformations in the interferometer fringes seen at lower Delta T became large unsteady swirls. Such behavior did not occur for radiatively-inactive gases, suggesting that a flow driven solely by radiation was obtained in SF6 and to a lesser extent in CO2 This was more pronounced at higher pressures and plate spacings, consistent with our scaling predictions.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号