首页> 美国政府科技报告 >Thermomechanical Fatigue Durability of T650-35/PMR-15 Sheet-Molding Compound Evaluated.
【24h】

Thermomechanical Fatigue Durability of T650-35/PMR-15 Sheet-Molding Compound Evaluated.

机译:评估T650-35 / pmR-15片状模塑料的热机械疲劳耐久性。

获取原文

摘要

High-performance polymer matrix composites (PMC's) continue to be the focus of a number of research efforts aimed at developing cost- effective, lightweight material alternatives for advanced aerospace and aeropropulsion applications. These materials not only offer significant advantages in specific stiffness and strength over their current metal counterparts, but they can be designed and manufactured to eliminate joints and fasteners by combining individual components into integral subassemblies, thus making them extremely attractive for commercial applications. With much emphasis on the low-cost manufacturing aspects of advanced composite structures, there is heightened interest in high-performance sheet-molding compounds (SMC's). Researchers at the NASA Lewis Research Center, in cooperation with the Allison Advanced Development Company, completed an investigation examining the use of T650-35/PMR-15 SMC for a midstage inner-vane endwall application within a gas turbine engine compressor. This component resides in the engine flow path and is subjected not only to high airflow rates, but also to elevated temperatures and pressures. This application is unique in that it represents a very aggressive use of high-performance SMC's, raising obvious concerns related to durability and property retention in the presence of microstructural damage. Therefore, it was necessary to evaluate the fatigue behavior and damage tolerance of this material subjected to a representative thermomechanical fatigue (TMF) mission-cycle loading spectrum.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号